
ModelArts

Model Training

Issue 01

Date 2024-06-12

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Introduction to Model Development.. 1

2 Preparing Data... 3

3 Preparing Algorithms... 6
3.1 Introduction to Algorithm Preparation.. 6
3.2 Using a Preset Image (Custom Script)...7
3.2.1 Overview... 7
3.2.2 Developing a Custom Script... 8
3.2.3 Creating an Algorithm... 11
3.3 Using a Custom Image..17
3.4 Searching for an Algorithm... 19
3.5 Deleting an Algorithm.. 20

4 Performing a Training.. 21
4.1 Creating a Training Job... 21
4.2 Reviewing Training Job Details...30
4.3 Training Job Logs...32
4.3.1 Introduction to Training Job Logs.. 32
4.3.2 Common Logs... 33
4.3.3 Viewing Training Job Logs.. 34
4.3.4 Locating Faults by Analyzing Training Logs... 35
4.4 Viewing Training Job Events.. 36
4.5 Viewing the Resource Usage of a Training Job.. 38
4.6 Evaluation Results...40
4.7 Viewing Environment Variables of a Training Container.. 44
4.8 Stopping, Rebuilding, or Searching for a Training Job... 49
4.9 CloudShell..49
4.9.1 Logging In to a Training Container Using Cloud Shell... 50
4.10 Releasing Training Job Resources..51

5 Training Experiment... 52
5.1 Introduction to Experiment... 52
5.2 Adding a Training Job to an Experiment.. 52
5.3 Viewing an Experiment... 53
5.4 Deleting an Experiment.. 55

ModelArts
Model Training Contents

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. iii

6 Advanced Training Operations...57
6.1 Selecting a Training Mode... 57
6.2 Automatic Recovery from a Training Fault.. 59
6.2.1 Training Fault Tolerance Check... 59
6.3 Resumable Training and Incremental Training... 64
6.4 Detecting Training Job Suspension... 65
6.5 Permission to Set the Highest Job Priority...66

7 Visualized Model Training...68
7.1 Introduction to Training Job Visualization..68
7.2 MindInsight Visualization Jobs... 69
7.3 TensorBoard Visualization Jobs.. 75

8 Distributed Training..83
8.1 Distributed Training..83
8.2 Single-Node Multi-Card Training Using DataParallel...84
8.3 Multi-Node Multi-Card Training Using DistributedDataParallel ...86
8.4 Distributed Debugging Adaptation and Code Example.. 87
8.5 Sample Code of Distributed Training... 91

ModelArts
Model Training Contents

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. iv

1 Introduction to Model Development

AI modeling involves two stages:

● Development: To train using deep learning, you must set up and configure the
environment and debug the code. For code debugging, it is recommended to
use ModelArts development environments.

● Experiment: To obtain an ideal model, you must optimize the datasets and
hyperparameters through multiple rounds of experiments. ModelArts training
is recommended.

In the two stages, code is designed, developed, and tested in repeated cycles. In
the development stage, when the code becomes stable, the modeling process
enters the experiment stage, during which hyperparameters are continuously
optimized to iterate the model. In the experiment stage, when the training
performance can be optimized, the modeling process returns to the development
stage for optimizing code.

The following is part of the process for AI modeling.

ModelArts provides model training, which allows you to review training results and
tune model parameters based on the training results. You can select resource
pools with different specifications for model training.

To train a model on ModelArts, follow these steps:

● Upload the labeled data to OBS. For details, see Preparing Data.
● Create an algorithm for model training. For details, see Preparing

Algorithms.

ModelArts
Model Training 1 Introduction to Model Development

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 1

● Create a training job on the ModelArts console. For details, see Creating a
Training Job.

● Review the training job logs and training resource usage. For details, see
Training Job Logs.

● Stop or delete a training job. For details, see Stopping, Rebuilding, or
Searching for a Training Job.

● Troubleshoot if you encounter any problem during training. For details, see
"Training Jobs" in Troubleshooting.

ModelArts
Model Training 1 Introduction to Model Development

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 2

2 Preparing Data

ModelArts uses OBS to store data, and backs up and takes snapshots for models,
achieving secure, reliable storage at low costs.

● OBS
● Obtaining Training Data

OBS
OBS provides stable, secure, and efficient cloud storage service that lets you store
virtually any volume of unstructured data in any format. Bucket and objects are
basic concepts in OBS. A bucket is a container for storing objects in OBS. Each
bucket is specific to a region and has specific storage class and access permissions.
A bucket is accessible through its domain name over the Internet. An object is the
basic unit of data storage in OBS.

OBS is a data storage center for ModelArts. All the input data, output data, and
cache data during AI development can be stored in OBS buckets for reading.

Before using ModelArts, create an OBS bucket and folders for storing data.

ModelArts
Model Training 2 Preparing Data

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 3

https://support.huaweicloud.com/eu/prepare-modelarts/modelarts_08_0003.html

Figure 2-1 OBS

Obtaining Training Data
Use either of the following methods to obtain ModelArts training data:

● Datasets stored in OBS buckets
After labeling and preprocessing your dataset, upload it to an OBS bucket.
When you create a training job, set Input to the path of the OBS bucket
where the training data is stored.

● Datasets in data management
If your dataset has not labeled or requires preprocessing, import it to
ModelArts data management for data preprocessing.

NO TE

ModelArts data management is being upgraded and is invisible to users who have not used
data management. It is recommended that new users store their training data in OBS
buckets.

ModelArts
Model Training 2 Preparing Data

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 4

Figure 2-2 Preparing data

ModelArts
Model Training 2 Preparing Data

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 5

3 Preparing Algorithms

3.1 Introduction to Algorithm Preparation
Machine learning explores general rules from limited volume of data and uses
these rules to predict unknown data. To obtain more accurate prediction results,
select a proper algorithm to train your model. ModelArts provides a large number
of algorithm samples for different scenarios. This section describes algorithm
sources and learning modes.

Algorithm Sources
You can use one of the following methods to build a ModelArts model:

● Using a preset image
To use a custom algorithm, use a framework built in ModelArts. ModelArts
supports most mainstream AI engines. For details, see Built-in Training
Engines. These built-in engines pre-load some extra Python packages, such as
NumPy. You can also use the requirements.txt file in the code directory to
install dependency packages. For details about how to create a training job
using a preset image, see Using a Preset Image (Custom Script).

● Using a custom image (For new-version training, see Using a Custom Image
to Train Models.)
The subscribed algorithms and built-in frameworks can be used in most
training scenarios. In certain scenarios, ModelArts allows you to create custom
images to train models. Custom images can be used to train models in
ModelArts only after they are uploaded to the Software Repository for
Container (SWR). Customizing an image requires a deep understanding of
containers. Use this method only if the subscribed algorithms and custom
scripts cannot meet your requirements.

Algorithm Learning Modes
ModelArts allows you to train models in different modes as required.

● Offline learning
Offline learning is the most fundamental mode for model training. In this
mode, all data required for training must be provided at a time, and

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 6

https://support.huaweicloud.com/eu/docker-modelarts/docker-modelarts_0017.html
https://support.huaweicloud.com/eu/docker-modelarts/docker-modelarts_0017.html

optimizing the objective function stops when the training is complete. The
advantage of this mode is that the trained models are stable, facilitating
model verification and evaluation. However, it is time-consuming and low in
storage space utilization.

● Incremental learning

Incremental learning is a continuous learning process. Compared with offline
learning, it does not need to store all training data at a time, which alleviates
the problem of limited storage resources. In addition, it saves a large amount
of compute power and time, and reduces economic costs in retraining.

3.2 Using a Preset Image (Custom Script)

3.2.1 Overview
If the subscribed algorithms cannot meet your requirements or you want to
migrate local algorithms to ModelArts for training, use the ModelArts preset
images to create algorithms. This method is also called using a preset image.

This section describes how to use a preset image to create an algorithm.

● For details about ModelArts built-in engines and models, see Built-in
Training Engines.

● To migrate local algorithms to ModelArts, perform code adaptation. For
details, see Developing a Custom Script.

● For details about how to use a preset image to create an algorithm on the
ModelArts console, see Creating an Algorithm.

Built-in Training Engines

The following table lists the training engines and their versions supported by
ModelArts.

NO TE

Supported AI engines vary depending on regions.

Table 3-1 AI engines supported by training jobs of the new version

Runtime
Environm
ent

Supporte
d Chip

Syste
m
Archi
tectu
re

System
Version

AI Engine and
Version

Supported
CUDA or
Ascend
Version

TensorFlo
w

CPU/GPU x86_6
4

Ubuntu18.0
4

tensorflow_2.1.0-
cuda_10.1-py_3.7-
ubuntu_18.04-
x86_64

cuda10.1

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 7

Runtime
Environm
ent

Supporte
d Chip

Syste
m
Archi
tectu
re

System
Version

AI Engine and
Version

Supported
CUDA or
Ascend
Version

PyTorch CPU/GPU x86_6
4

Ubuntu18.0
4

pytorch_1.8.0-
cuda_10.2-py_3.7-
ubuntu_18.04-
x86_64

cuda10.2

MPI CPU/GPU x86_6
4

Ubuntu18.0
4

mindspore_1.3.0-
cuda_10.1-py_3.7-
ubuntu_18.04-
x86_64

cuda_10.1

Horovod GPU x86_6
4

ubuntu_18.
04

horovod_0.20.0-
tensorflow_2.1.0-
cuda_10.1-py_3.7-
ubuntu_18.04-
x86_64

cuda_10.1

horovod_0.22.1-
pytorch_1.8.0-
cuda_10.2-py_3.7-
ubuntu_18.04-
x86_64

cuda_10.2

3.2.2 Developing a Custom Script
Before you use a preset image to create an algorithm, develop the algorithm code.
This section describes how to modify local code for model training on ModelArts.

When creating an algorithm, set the code directory, boot file, input path, and
output path. These settings enable the interaction between your code and
ModelArts.

● Code directory
Specify the code directory in the OBS bucket and upload training data such as
training code, dependency installation packages, or pre-generated model to
the directory. After you create a training job, ModelArts downloads the code
directory and its subdirectories to the container.
Take OBS path obs://obs-bucket/training-test/demo-code as an example.
The content in the OBS path will be automatically downloaded to $
{MA_JOB_DIR}/demo-code in the training container, and demo-code
(customizable) is the last-level directory of the OBS path.
Do not store training data in the code directory. When the training job starts,
the data stored in the code directory will be downloaded to the backend. A
large amount of training data may lead to a download failure. It is
recommended that the size of the code directory does not exceed 50 MB.

● Boot file

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 8

The boot file in the code directory is used to start the training. Only Python
boot files are supported.

● Input path
The training data must be uploaded to an OBS bucket or stored in the
dataset. In the training code, the input path must be parsed. ModelArts
automatically downloads the data in the input path to the local container
directory for training. Ensure that you have the read permission on the OBS
bucket. After the training job is started, ModelArts mounts a disk to the /
cache directory. You can use this directory to store temporary files. For details
about the size of the /cache directory, see "What Are Sizes of the /cache
Directories for Different Resource Specifications in the Training Environment?"
in FAQs

● Output path
You are advised to set an empty directory as the training output path. In the
training code, the output path must be parsed. ModelArts automatically
uploads the training output to the output path. Ensure that you have the
write and read permissions on the OBS bucket.

The following section describes how to develop training code in ModelArts.

(Optional) Introducing Dependencies
1. If your model references other dependencies, place the required file or

installation package in Code Directory you set during algorithm creation.
– For details about how to install the Python dependency package, see

"How Do I Create a Training Job When a Dependency Package Is
Referenced by the Model to Be Trained?" in FAQs.

– For details about how to install a C++ dependency library, see "How Do I
Install a Library That C++ Depends on?" in FAQs.

– For details about how to load parameters to a pre-trained model, see
"How Do I Load Some Well Trained Parameters During Job Training?" in
FAQs.

Parsing Input and Output Paths

To enable a ModelArts model reads data stored in OBS or outputs data to a
specified OBS path, follow these steps to configure the input and output data:

1. Parse the input and output paths in the training code. The following method
is recommended:
import argparse
Create a parsing task.
parser = argparse.ArgumentParser(description='train mnist')

Add parameters.
parser.add_argument('--data_url', type=str, default="./Data/mnist.npz", help='path where the dataset
is saved')
parser.add_argument('--train_url', type=str, default="./Model", help='path where the model is saved')

Parse the parameters.
args = parser.parse_args()

After the parameters are parsed, use data_url and train_url to replace the
paths to the data source and the data output, respectively.

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 9

2. When creating a training job, configure the input and output paths.
Select an OBS path or dataset path as the training input, and an OBS path for
the output.

Figure 3-1 Setting training input and output

Editing Training Code and Saving the Model
Training code and the code for saving the model are closely related to the AI
engine you use. The following uses the TensorFlow framework as an example.
Before using this case, you need to download the mnist.npz file and upload it to
the OBS bucket. The training input is the OBS path where the mnist.npz file is
stored.
import os
import argparse
import tensorflow as tf

parser = argparse.ArgumentParser(description='train mnist')
parser.add_argument('--data_url', type=str, default="./Data/mnist.npz", help='path where the dataset is
saved')
parser.add_argument('--train_url', type=str, default="./Model", help='path where the model is saved')
args = parser.parse_args()

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url)
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)
])

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adam',
 loss=loss_fn,
 metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)

model.save(os.path.join(args.train_url, 'model'))

Differences in Training Code Adaptation
In the old version, you are required to configure data input and output as follows:

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 10

https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz

Parse CLI parameters.
import argparse
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
parser.add_argument('--data_url', type=str, default="./Data",
 help='path where the dataset is saved')
parser.add_argument('--train_url', type=str, default="./Model", help='if is test, must provide\
 path where the trained ckpt file')
args = parser.parse_args()
...
Download data to your local container. In the code, local_data_path specifies the training input path.
mox.file.copy_parallel(args.data_url, local_data_path)
...
Upload the local container data to the OBS path.
mox.file.copy_parallel(local_output_path, args.train_url)

3.2.3 Creating an Algorithm
Your locally developed algorithms or algorithms developed using other tools can
be uploaded to ModelArts for unified management. Note the following when
creating a custom algorithm:

1. Prerequisites

2. Accessing the Algorithm Creation Page

3. Setting Basic Information

4. Setting the Boot Mode

5. Configuring Pipelines

6. Configuring Hyperparameters

7. Supported Policies

8. Adding Training Constraints

9. Previewing the Runtime Environment

10. Follow-Up Operations

Prerequisites
● Training data is available. You can create a dataset in ModelArts or upload an

existing dataset used for training to the OBS directory.

● Your training script has been uploaded to an OBS directory. For details about
how to develop a training script, see Developing a Custom Script.

● At least one empty folder has been created in OBS for storing the training
output.

Accessing the Algorithm Creation Page
1. Log in to the ModelArts console and choose Algorithm Management in the

navigation pane on the left.

2. On the My algorithm tab, click Create. The Create Algorithm page is
displayed.

Setting Basic Information

Enter basic information, including Name and Description.

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 11

Figure 3-2 Setting basic information

Setting the Boot Mode

Select a preset image to create an algorithm.

Set Image, Code Directory, and Boot File based on the algorithm code. Ensure
that the framework of the AI image you select is the same as the one you use for
editing algorithm code. For example, if TensorFlow is used for editing algorithm
code, select a TensorFlow image when you create an algorithm.

Table 3-2 Parameters

Parameter Description

Boot Mode >
Preset image

AI images supported by the new-version training are displayed
by default. For details, see Overview.

Code Directory OBS path for storing the algorithm code. The files required for
training, such as the training code, dependency installation
packages, and pre-generated models, are uploaded to the
code directory.
Do not store training data in the code directory. When the
training job starts, the data stored in the code directory will be
downloaded to the backend. A large amount of training data
may lead to a download failure.
After you create the training job, ModelArts downloads the
code directory and its subdirectories to the container.
Take OBS path obs://obs-bucket/training-test/demo-code as
an example. The content in the OBS path will be automatically
downloaded to ${MA_JOB_DIR}/demo-code in the training
container, and demo-code (customizable) is the last-level
directory of the OBS path.
NOTE

● Any programming language is supported.
● The total number of both files and folders cannot exceed 1,000.
● The total size of files cannot exceed 5 GB.

Boot File The file must be stored in the code directory and end with .py.
ModelArts supports boot files edited only in Python.
The boot file in the code directory is used to start a training
job.

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 12

Figure 3-3 Using a custom script to create an algorithm

Configuring Pipelines
A preset image-based algorithm obtains data from an OBS bucket or dataset for
model training. The training output is stored in an OBS bucket. The input and
output parameters in your algorithm code must be parsed to enable data
exchange between ModelArts and OBS. For details about how to develop code for
training on ModelArts, see Developing a Custom Script.

When you use a preset image to create an algorithm, configure the input and
output parameters defined in the algorithm code.

● Input configurations

Table 3-3 Input configurations

Paramete
r

Description

Parameter
Name

Set this parameter based on the data input parameter in your
algorithm code. The code path parameter must be the same as
the training input parameter parsed in your algorithm code.
Otherwise, the algorithm code cannot obtain the input data.
For example, If you use argparse in the algorithm code to
parse data_url into the data input, set the data input
parameter to data_url when creating the algorithm.

Descriptio
n

Customize the description of the input parameter.

Obtained
from

Select a source of the input parameter, Hyperparameters
(default) or Environment variables.

Constraint
s

Enable this parameter to specify the input source. The default
source is a storage path. This parameter is optional.

Add Add multiple input data sources based on your algorithm.

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 13

https://support.huaweicloud.com/eu/develop-modelarts/develop-modelarts-0008.html

Figure 3-4 Input configurations

● Output configurations

Table 3-4 Output configurations

Parameter Description

Parameter
Name

Set this parameter based on the data output parameter in
your algorithm code. The code path parameter must be the
same as the training output parameter parsed in your
algorithm code. Otherwise, the algorithm code cannot obtain
the output path.
For example, if you use argparse in the algorithm code to
parse train_url into the data output, set the data output
parameter to train_url when creating the algorithm.

Descriptio
n

Customize the description of the output parameter.

Obtained
from

Select a source of the output parameter, Hyperparameters
(default) or Environment variables.

Add Add multiple output data paths based on your algorithm.

Figure 3-5 Output configurations

Configuring Hyperparameters

When you use a preset image to create an algorithm on ModelArts, you can
customize hyperparameters so you can review or modify them anytime. Defined
hyperparameters are displayed in the boot command and passed to your boot file
as CLI parameters.

1. Import hyperparameters.

You can click Add hyperparameter to manually add hyperparameters.

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 14

Figure 3-6 Adding hyperparameters

2. Edit hyperparameters. For details, see Table 3-5.

Table 3-5 Hyperparameter parameters

Parame
ter

Description

Name Enter the hyperparameter name.
Enter 1 to 64 characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Type Select a data type of the hyperparameter. The value can be
String, Integer, Float, or Boolean

Default Set the default value of the hyperparameter. This value will be
used for training jobs by default.

Restrain Click Restrain and set the range of the default value or
enumerated value in the dialog box displayed.

Require
d

Select Yes or No.
● If you select No, you can delete the hyperparameter on the

training job creation page when using this algorithm to create
a training job.

● If you select Yes, you cannot delete the hyperparameter on
the training job creation page when using this algorithm to
create a training job.

Descript
ion

Enter the description of the hyperparameter.
Only letters, digits, spaces, hyphens (-), underscores (_), commas
(,), and periods (.) are allowed.

Supported Policies

Only the pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 and
tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64 images are available for
auto search.

Adding Training Constraints

You can add training constraints of the algorithm based on your needs.

● Resource Type: Select the required resource types.
● Multicard Training: Choose whether to support multi-card training.
● Distributed Training: Choose whether to support distributed training.

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 15

Figure 3-7 Training constraints

Previewing the Runtime Environment

When creating an algorithm, click the arrow on
in the lower right corner of the page to know the paths of the code directory, boot
file, and input and output data in the training container.

Figure 3-8 Preview Runtime Environment

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 16

Follow-Up Operations

After an algorithm is created, use it to create a training job. For details, see
Creating a Training Job.

3.3 Using a Custom Image
The subscribed algorithms and preset images can be used in most training
scenarios. In certain scenarios, ModelArts allows you to create custom images to
train models.

Customizing an image requires a deep understanding of containers. Use this
method only if the subscribed algorithms and preset images cannot meet your
requirements. Custom images can be used to train models in ModelArts only after
they are uploaded to the Software Repository for Container (SWR).

You can use custom images for training on ModelArts in either of the following
ways:

● Using a preset image with customization
If you use a preset image to create a training job and you need to modify or
add some software dependencies based on the preset image, you can
customize the preset image. In this case, select a preset image and choose
Customize from the framework version drop-down list box.

● Using a custom image
You can create an image based on the ModelArts image specifications, select
your own image and configure the code directory (optional) and boot
command to create a training job.

Using a Preset Image with Customization

The only difference between this method and creating a training job totally based
on a preset image is that you must select an image. You can create a custom
image based on a preset image. For details about how to create a custom image
based on a preset image, see Using a Base Image to Create a Training Image.

Figure 3-9 Creating an algorithm using a preset image with customization

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 17

https://support.huaweicloud.com/eu/docker-modelarts/docker-modelarts_0118.html

The process of this method is the same as that of creating a training job based on
a preset image. For example:

● The system automatically injects environment variables.
– PATH=${MA_HOME}/anaconda/bin:${PATH}
– LD_LIBRARY_PATH=${MA_HOME}/anaconda/lib:${LD_LIBRARY_PATH}
– PYTHONPATH=${MA_JOB_DIR}:${PYTHONPATH}

● The selected boot file will be automatically started using Python commands.
Ensure that the Python environment is correct. The PATH environment
variable is automatically injected. Run the following commands to check the
Python version for the training job:
– export MA_HOME=/home/ma-user; docker run --rm {image} $

{MA_HOME}/anaconda/bin/python -V
– docker run --rm {image} $(which python) -V

● The system automatically adds hyperparameters associated with the preset
image.

Using a Custom Image

Figure 3-10 Creating an algorithm using a custom image

For details about how to use custom images supported by the new-version
training, see Using a Custom Image to Create a CPU- or GPU-based Training
Job.

If all used images are customized, do as follows to use a specified Conda
environment to start training:

Training jobs do not run in a shell. Therefore, you are not allowed to run the
conda activate command to activate a specified Conda environment. In this case,
use other methods to start training.

For example, Conda in your custom image is installed in the /home/ma-user/
anaconda3 directory, the Conda environment is python-3.7.10, and the training
script is stored in /home/ma-user/modelarts/user-job-dir/code/train.py. Use a
specified Conda environment to start training in one of the following ways:

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 18

https://support.huaweicloud.com/eu/docker-modelarts/docker-modelarts-0080.html
https://support.huaweicloud.com/eu/docker-modelarts/docker-modelarts-0080.html

● Method 1: Configure the correct DEFAULT_CONDA_ENV_NAME and
ANACONDA_DIR environment variables for the image.
Run the python command to start the training script. The following shows an
example:
python /home/ma-user/modelarts/user-job-dir/code/train.py

● Method 2: Use the absolute path of Conda environment Python.
Run the /home/ma-user/anaconda3/envs/python-3.7.10/bin/python
command to start the training script. The following shows an example:
/home/ma-user/anaconda3/envs/python-3.7.10/bin/python /home/ma-user/modelarts/user-job-dir/
code/train.py

● Method 3: Configure the path environment variable.
Configure the bin directory of the specified Conda environment into the path
environment variable. Run the python command to start the training script.
The following shows an example:
export PATH=/home/ma-user/anaconda3/envs/python-3.7.10/bin:$PATH; python /home/ma-user/
modelarts/user-job-dir/code/train.py

● Method 4: Run the conda run -n command.
Run the /home/ma-user/anaconda3/bin/conda run -n python-3.7.10
command to execute the training. The following shows an example:
/home/ma-user/anaconda3/bin/conda run -n python-3.7.10 python /home/ma-user/modelarts/user-
job-dir/code/train.py

NO TE

If there is an error indicating that the .so file is unavailable in the $ANACONDA_DIR/envs/
$DEFAULT_CONDA_ENV_NAME/lib directory, add the directory to LD_LIBRARY_PATH and
place the following command before the preceding boot command:
export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/
lib:$LD_LIBRARY_PATH;

For example, the example boot command used in method 1 is as follows:
export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/
lib:$LD_LIBRARY_PATH; python /home/ma-user/modelarts/user-job-dir/code/train.py

3.4 Searching for an Algorithm
ModelArts allows you to quickly search for algorithms by performing the following
operations.

Operation 1: Search for jobs by name, image, code directory, description, and
creation time.

Operation 2: Click the refresh button in the upper right corner to refresh the
algorithm list.

Operation 3: Configure the custom columns and other basic settings.

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 19

Figure 3-11 Configuring the custom columns and other basic settings

To sort algorithms in a column, click the arrow in the table header of the
algorithm list.

Figure 3-12 Sorting

3.5 Deleting an Algorithm

Deleting Your Algorithm
Choose Algorithm Management > My algorithm and click Delete in the
Operation column of the target algorithm. In the displayed dialog box, confirm
the deletion.

ModelArts
Model Training 3 Preparing Algorithms

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 20

4 Performing a Training

4.1 Creating a Training Job
ModelArts training management enables you to create training jobs, review
training statuses, and manage job versions. Model training is an iterative
optimization process. Through unified training management, you can flexibly
select algorithms, data, and hyperparameters to obtain the optimal input
configuration and model. After comparing metrics between training versions, you
can determine the most satisfactory training job.

Prerequisites
● Data is available either by creating a dataset in ModelArts or by uploading

the data used for training to an OBS directory.
● An algorithm has been created either by using a preset image (Using a

Preset Image (Custom Script)) or using a custom image (Using a Custom
Image).

● At least one empty folder has been created in OBS for storing the training
output. OBS buckets are not encrypted. ModelArts does not support encrypted
OBS buckets. When creating an OBS bucket, do not enable bucket encryption.

● Access authorization has been configured. For details, see Configuring Access
Authorization (Global Configuration).

Creating a Training Job
1. Log in to the ModelArts console.
2. In the navigation pane, choose Training Management > Training Jobs. The

training job list is displayed.
3. Click Create Training Job. Then, configure parameters.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 21

https://support.huaweicloud.com/eu/prepare-modelarts/modelarts_08_0007.html
https://support.huaweicloud.com/eu/prepare-modelarts/modelarts_08_0007.html

Table 4-1 Basic information

Parameter Description

Name Name of a training job.
The system automatically generates a name. You
can rename it based on the following naming
rules:
● The name contains 1 to 64 characters.
● Letters, digits, hyphens (-), and underscores (_)

are allowed.

Description Description of a training job.

Experiment The options are Create new, Use existing, and
Not required. If you set Experiment to Create
new, enter an experiment name and description.

Table 4-2 Algorithm parameters (algorithm type)

Para
mete
r

Opti
on

Description

Algor
ithm
Type
>
Custo
m
algori
thm
>
Boot
Mode

Prese
t
imag
e

If Boot Mode is set to Preset image, select a preset engine
and configure the code directory and boot file.
● Code Directory: Select the code directory required for

this training job. Upload code to an OBS bucket
beforehand. The total size of files in the directory cannot
exceed 5 GB, the number of files cannot exceed 1,000,
and the folder depth cannot exceed 32.

● Boot File: Select the Python boot script in the code
directory. The boot file must be a .py file because
ModelArts supports only boot files written in Python.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 22

Para
mete
r

Opti
on

Description

Algor
ithm
Type
>
Custo
m
algori
thm
>
Boot
Mode

Prese
t
imag
e >
Custo
mize

If Boot Mode is set to Preset image and the engine version
to Customize, configure the image, code directory, and
boot file.
● Image: Select a container image path.

– Private images or shared images: Click Select on the
right to select an SWR image. Ensure that the
required image has been uploaded to SWR.

– Public images: Enter the SWR image path in the
format of Organization name/Image name:Version
name. Do not contain the domain name
(swr.<region>.example.com) in the path because the
system will automatically add the domain name to
the path. For example, if the SWR address of a public
image is swr.<region>.example.com/test-image/
tensorflow2_1_1:1.1.1, set this parameter to test-
images/tensorflow2_1_1:1.1.1.

● Code Directory: Select the code directory required for
this training job. Upload code to an OBS bucket
beforehand. The total size of files in the directory cannot
exceed 5 GB, the number of files cannot exceed 1,000,
and the folder depth cannot exceed 32.

● Boot File: Select the Python boot script in the code
directory. The boot file must be a .py file because
ModelArts supports only boot files written in Python.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 23

Para
mete
r

Opti
on

Description

Algor
ithm
Type
>
Custo
m
algori
thm
>
Boot
Mode

Custo
m
imag
e

If Boot Mode is set to Custom image, set Image, Code
Directory, User ID, and Boot Command. For details, see
Using a Custom Image to Create an Algorithm.
● Image: Select a container image path.

– Private images or shared images: Click Select on the
right to select an SWR image. Ensure that the
required image has been uploaded to SWR.

– Public images: Enter the SWR image path in the
format of Organization name/Image name:Version
name. Do not contain the domain name
(swr.<region>.example.com) in the path because the
system will automatically add the domain name to
the path. For example, if the SWR address of a public
image is swr.<region>.example.com/test-image/
tensorflow2_1_1:1.1.1, set this parameter to test-
images/tensorflow2_1_1:1.1.1.

● Code Directory: Select the code directory required for
this training job. This parameter is optional.
Take OBS path obs://obs-bucket/training-test/demo-
code as an example. The content in the OBS path will be
automatically downloaded to ${MA_JOB_DIR}/demo-
code in the training container, and demo-code
(customizable) is the last-level directory of the OBS
path.

● User ID: Enter the user ID for running the container. The
default value 1000 is recommended. This parameter is
optional.
If the UID needs to be specified, its value must be within
the specified range. The UID ranges of different resource
pools are as follows:
– Public resource pool: 1000 to 65535
– Dedicated resource pool: 0 to 65535

● Boot Command: Enter the image boot command. This
parameter is mandatory. The boot command will be
automatically executed after the code directory is
downloaded.
– If the training boot script is a .py file, train.py for

example, the boot command can be python $
{MA_JOB_DIR}/demo-code/train.py.

– If the training boot script is a .sh file, main.sh for
example, the boot command can be bash $
{MA_JOB_DIR}/demo-code/main.sh.

Semicolons (;) and ampersands (&&) can be used to
combine multiple boot commands. demo-code

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 24

https://support.huaweicloud.com/eu/docker-modelarts/develop-modelarts-0100.html

Para
mete
r

Opti
on

Description

(customizable) in the boot command is the last-level
directory of the OBS path.

Algor
ithm
Type
>
Custo
m
algori
thm

Local
Code
Direc
tory

You can specify the local directory of a training container.
When a training job starts, the system automatically
downloads the code directory to this directory.
The default local code directory is /home/ma-user/
modelarts/user-job-dir. This parameter is optional.

Algor
ithm
Type
>
Custo
m
algori
thm

Work
Direc
tory

Directory where the boot file in the training container is
located. When a training job starts, the system
automatically runs the cd command to change the work
directory to the specified directory.

Algor
ithm
Type

My
algori
thm

Select an algorithm or create an algorithm by referring to
Creating an Algorithm.

Table 4-3 Algorithm parameters (input and output)

Para
mete
r

Opti
on

Description

Input Nam
e

The recommended value is data_url. The training input
must match the input configuration set in your selected
algorithm. For details, see Table 3-3.
You can select a dataset or data path for data input. When
the training job is started, ModelArts automatically
downloads the data in the input path to the container
directory for training.

Data
path

Select the training data from your OBS bucket.
Click Data path and select the OBS bucket and folder in
the dialog box displayed.
NOTE

If Data path is unavailable, the training data of the selected
algorithm cannot be from an OBS path.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 25

Para
mete
r

Opti
on

Description

Obtai
ned
from

The following uses training input data_path as an example.
If you select Hyperparameters, use this code to obtain the
data:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_path')
args, unknown = parser.parse_known_args()
data_path = args.data_path

If you select Environment variables, use this code to
obtain the data:
import os
data_path = os.getenv("data_path", "")

Outp
ut

Nam
e

The algorithm code reads the local path to the training
output based on this parameter.
The recommended value is train_url. The training output
must match the output configuration set in your selected
algorithm. For details, see Table 3-4.
You can select an OBS path for data output. During
training, ModelArts automatically uploads the training
output to the OBS path.

Data
path

This data path stores the training output. During and after
the training, the system automatically synchronizes files
from the local directory to the data path. You can only
select an OBS path as the data path.
Select an OBS path for storing the training result. To
minimize errors, select an empty directory.

Obtai
ned
from

The following uses the training output train_url as an
example.
If you select Hyperparameters, use this code to obtain the
data:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--train_url')
args, unknown = parser.parse_known_args()
train_url = args.train_url

If you select Environment variables, use this code to
obtain the data:
import os
train_url = os.getenv("train_url", "")

Predo
wnlo
ad

If you set Predownload to Yes, the system automatically
downloads the files in the training output data path to the
local directory of the training container before the training
job is started. Select Yes for resumable training and
incremental training.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 26

Para
mete
r

Opti
on

Description

Hype
rpara
mete
r

N/A The value of this parameter varies according to the selected
algorithm.
If you have defined hyperparameters when creating an
algorithm, all hyperparameters of the algorithm are
displayed. Whether hyperparameters can be modified or
deleted depends on how you configure the constraints
when creating the algorithm. For details, see Configuring
Hyperparameters.

Envir
onme
nt
Varia
ble

N/A Environment variables, which you can add as required. For
details about the environment variables preset in the
training container, see Viewing Environment Variables of
a Training Container.

Auto
Resta
rt

N/A Number of retries for a failed training job. If this parameter
is enabled, a failed training job will be automatically re-
delivered and run. On the training job details page, you can
review the number of retries for a failed training job.
● This function is disabled by default.
● If you enable this function, set the number of retries. The

value ranges from 1 to 3 and cannot be changed.

NO TE

The training input, training output, and hyperparameters vary according to the
selected algorithm.
If the system displays a message for Input, indicating there is no input channel for the
selected algorithm, you do not need to set data input on this page.
If the system displays a message for Output, indicating there is no output channel for
the selected algorithm, you do not need to set data output on this page.
If the system displays a message for Hyperparameters, indicating the selected
algorithm does not support custom hyperparameters, you do not need to set
hyperparameters on this page.

4. Select the instance specifications. The value range of the training parameters
must comply with the constraints of the selected algorithm.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 27

Table 4-4 Resource parameters

Parameter Description

Resource Pool Select a resource pool for the job. Public and dedicated
resource pools are available for you to select.
If you select a dedicated resource pool, you can review
details about the pool. If the number of available cards of
this pool is insufficient, jobs may need to be queued. In
this case, use another resource pool or reduce the number
of cards required.
NOTE

Dedicated resource pools can be accessed to your VPCs and
subnets. For details, see Interconnecting a VPC.
If you want to change the VPC accessible to your dedicated
resource pool, see Interconnecting a VPC.

Resource Type Select CPU or GPU as needed. Set this parameter based
on the resource type specified in your training code.

Specifications Select a resource flavor based on the resource type. If the
type of resources to be used has been specified in your
training code, only the options that comply with the
constraints of the selected algorithm are available for you
to choose. For example, if GPU is selected in the training
code but you select CPU here, the training may fail.
During training, ModelArts will mount NVME SSDs to
the /cache directory. You can use this directory to store
temporary files. The data disk size varies depending on
the resource type. To prevent insufficient memory during
training, click Check Input Size to check whether the disk
size of selected instance specifications is sufficient for the
input size.

NOTICE
The resource flavor GPU:n*nvidia-t4 (n indicates a specific
number) does not support multi-process training.

Compute
Nodes

Set the number of compute nodes. The default value is 1.

Job Priority When using a dedicated resource pool for training, you
can set the priority of the training job. The value ranges
from 1 to 3. The default priority is 1, and the highest
priority is 3. By default, the job priority can be set to 1 or
2. After the permission to set the highest job priority is
configured, the priority can be set to 1 to 3.
You can change the priority of a pending job.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 28

https://support.huaweicloud.com/eu/resmgmt-modelarts/resmgmt-modelarts_0012.html#section2
https://support.huaweicloud.com/eu/resmgmt-modelarts/resmgmt-modelarts_0012.html#section2

Parameter Description

Persistent Log
Saving

If you select CPU or GPU resources, Persistent Log Saving
is available for you to set.
This function is disabled by default. ModelArts
automatically stores training logs for 30 days. You can
download all logs on the job details page.
After enabling this function, you can store training logs in
a specified OBS directory. You are advised to select an
empty OBS directory to store the log files generated
during training.

Job Log Path If you select Ascend resources, select an empty OBS
directory for storing training logs. Ensure that you have
read and write permissions to the selected OBS directory.

Event
Notification

You can enable this function so you will be notified of
specific events, such as job status changes or suspected
suspensions, via an SMS or email.
If you enable this function, configure the following
parameters:
● Topic: Specify the topic of event notifications. You can

create a topic on the SMN console.
● Event: Select events you want to subscribe to. The

options include JobStarted, JobCompleted, JobFailed,
JobTerminated, and JobHanged.

NOTE
● After you create a topic on the SMN console, add a

subscription to the topic, and confirm the subscription. Then,
you will be notified of events.

● Currently, only training jobs using GPUs support JobHanged
events.

Auto Stop ● After this parameter is enabled and the auto stop time
is set, a training job automatically stops at the
specified time.

● If this function is disabled, a training job will continue
to run.

● The options are 1 hour, 2 hours, 4 hours, 6 hours, and
Customize (1 hour to 720 hours).

5. Click Submit to create the training job.

A training job generally runs for a period of time. To check the real-time
status and basic information of a training job, switch to the training job list.

– In the training job list, Status of the newly created training job is
Pending.

– When the status of a training job changes to Completed, the training job
is complete, and the generated model is stored in the specified training
output path.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 29

– If the status is Failed or Abnormal, click the job name to go to the job
details page and check logs for troubleshooting. For details, see
Reviewing Training Job Details.

4.2 Reviewing Training Job Details
1. Log in to the ModelArts console.
2. In the navigation pane on the left, choose Training Management > Training

Jobs.
3. In the training job list, click the target job name to switch to the training job

details page.
4. On the left of the training job details page, review basic job settings and

algorithm parameters.
– Basic job settings

Table 4-5 Basic job settings

Parameter Description

Job ID Unique ID of the training job.

Status Status of the training job.

Created Time when the training job is created.

Duration Running duration of the training job.

Description Description of the training job.
You can click the edit icon to update the description of a
training job.

– Algorithm parameters

Table 4-6 Algorithm parameters

Parameter Description

Algorithm
Name

Algorithm used in the training job. You can click the
algorithm name to go to the algorithm details page.

Preset image Preset image used by the training job.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 30

Parameter Description

Code
Directory

OBS path to the code directory of the training job.
You can click Edit Code on the right to edit the
training script code in OBS Online Editor. OBS Online
Editor is not available for a training job in the
Pending, Creating, or Running status.

NOTE
This parameter is not supported when you use an algorithm
subscribed from AI Hub to create a training job.

Boot File Location where the training boot file is stored.
NOTE

This parameter is not supported when you use an algorithm
subscribed from AI Hub to create a training job.

Local Code
Directory

Path to the training code in the training container.

Work
Directory

Path to the training startup file in the training
container.

Compute
Nodes

Number of compute nodes set for the training job.

Specifications Training specifications used by the training job.

Input Path OBS path where the input data is stored.

Parameter
Name

Input path parameter specified in the algorithm code.

Local Path
(Training
Parameter
Value)

Path for storing the input data in the ModelArts
backend container. After the training is started,
ModelArts downloads the data stored in OBS to the
backend container.

Output Path OBS path where the output data is stored.

Parameter
Name

Output path parameter specified in the algorithm
code.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 31

Parameter Description

Local Path
(Training
Parameter
Value)

Path for storing the output data in the ModelArts
backend container.

Hyperparamet
er

Hyperparameters used in the training job.

Environment
Variable

Environment variables for the training job.

4.3 Training Job Logs

4.3.1 Introduction to Training Job Logs

Overview

Training logs record the runtime process and exception information of training
jobs and provide useful details for fault location. The standard output and
standard error information in your code are displayed in training logs. If you
encounter an issue during the execution of a ModelArts training job, view logs
first. In most scenarios, you can locate the issue based on the error information
reported in logs.

Retention Period

Logs are classified into the following types based on the retention period:

● Real-time logs: generated during training job running and can be viewed on
the ModelArts training job details page.

● Historical logs: After a training job is complete, you can view its historical logs
on the ModelArts training job details page. ModelArts automatically stores
the logs for 30 days.

● Permanent logs: dumped to your OBS bucket. When creating a training job,
you can set an OBS dump path. You need to manually enable Persistent Log
Saving for CPU- or GPU-based training jobs.

Figure 4-1 Enabling Persistent Log Saving

Real-time logs and historical logs have no difference in content. Real-time logs,
historical logs, and permanent logs of CPU- or GPU-based training jobs are the
same.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 32

Related Chapters
● On the ModelArts training job details page, you can preview logs, download

logs, and search for logs by keyword in the log pane. For details, see Viewing
Training Job Logs.

● ModelArts also enables you to quickly locate and rectify training faults. For
details, see Locating Faults by Analyzing Training Logs.

4.3.2 Common Logs
Common logs include the logs for pip-requirement.txt, training process, and
ModelArts.

Log Type

Table 4-7 Log type

Type Description

Training process log Standard output of your training code

Installation logs for
pip-requirement.txt

If pip-requirement.txt is defined in training code, PIP
package installation logs are generated.

ModelArts logs ModelArts logs are used by O&M personnel to locate
service faults.

File Format

The format of a common log file is as follows. task id is the node ID of a training
job.

Unified log format: modelarts-job-[job id]-[task id].log
Example: log/modelarts-job-95f661bd-1527-41b8-971c-eca55e513254-worker-0.log

● Single-node training jobs generate a log file, and task id defaults to
worker-0.

● Distributed training generates multiple node log files, which are distinguished
by task id, such as worker-0 and worker-1.

Common logs include the logs for pip-requirement.txt, training process, and
ModelArts.

ModelArts Logs

ModelArts logs can be filtered in the common log file modelarts-job-[job id]-
[task id].log using the following keywords: [ModelArts Service Log] or
Platform=ModelArts-Service.

● Type 1: [ModelArts Service Log] xxx
[ModelArts Service Log][init] download code_url: s3://dgg-test-user/snt9-test-cases/mindspore/lenet/

● Type 2: time="xxx" level="xxx" msg="xxx" file="xxx" Command=xxx
Component=xxx Platform=xxx

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 33

time="2021-07-26T19:24:11+08:00" level=info msg="start the periodic upload task, upload period = 5
seconds " file="upload.go:46" Command=obs/upload Component=ma-training-toolkit
Platform=ModelArts-Service

4.3.3 Viewing Training Job Logs
On the training job details page, you can preview logs, download logs, search for
logs by keyword, and filter system logs in the log pane.

● Previewing logs
You can preview logs of each compute node, if multiple compute nodes are
used, in the training log pane by choosing the target node from the drop-
down list on the right.

Figure 4-2 Viewing logs of different compute nodes

If a log file is oversized, the system displays only the latest logs in the log
pane. To view all logs, click the link in the upper part of the log pane, which
will direct you to a new page.

Figure 4-3 Viewing all logs

NO TE

● If the total size of all logs exceeds 500 MB, the log page may be frozen. In this
case, download the logs to view them locally.

● A log preview link can be accessed by anyone within one hour after it is generated.
You can share the link with others.

Ensure that no privacy information is contained in the logs. Otherwise, information
leakage may occur.

● Downloading logs
Training logs are retained for only 30 days. To permanently store logs, click
the download icon in the upper right corner of the log pane. You can
download the logs of multiple compute nodes in a batch. You can also enable
Persistent Log Saving and set a log path when you create a training job. In
this way, the logs will be automatically stored in the specified OBS path.
If a training job is created on an Ascend compute node, certain system logs
cannot be downloaded in the training log pane. To obtain these logs, go to
the Job Log Path you set when you created the training job.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 34

Figure 4-4 Downloading logs

● Searching for logs by keyword
In the upper right corner of the log pane, enter a keyword in the search box
to search for logs, as shown in Figure 4-5.

Figure 4-5 Searching for logs by keyword

The system will highlight the keyword and redirect you between search
results. Only the logs loaded in the log pane can be searched for. If the logs
are not fully displayed (see the message displayed on the page), obtain all
the logs by downloading them or clicking the full log link and then search for
the logs. On the page redirected by the full log link, press Ctrl+F to search for
logs.

● Filtering system logs

Figure 4-6 System logs

If System logs is selected, system logs and user logs are displayed. If System
logs is deselected, only user logs are displayed.

4.3.4 Locating Faults by Analyzing Training Logs
If you encounter an issue during the execution of a ModelArts training job, view
logs first. In most scenarios, you can locate the issue based on the error
information reported in logs.

If a training job fails, ModelArts automatically identifies the failure cause and
displays a message on the log page. The message consists of possible causes,
recommended solutions, and error logs (marked in red).

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 35

Figure 4-7 Identifying training faults

ModelArts provides possible causes (for reference only) and solutions for some
common training faults. Not all faults can be identified. For a distributed job, only
the analysis result of the current node is displayed. To obtain the failure cause of a
training job, check the analysis results of all nodes used by the training job.

To rectify common training faults, perform the following steps:

1. Rectify the fault based on the analysis and suggestions provided on the log
page.
– Solution 1: A troubleshooting document is provided for you to follow.
– Solution 2: Rebuild the training job and run it again.

2. If the fault persists, analyze the error information in the logs to locate and
rectify the fault.

3. If the provided solutions cannot rectify your fault, you can submit a service
ticket for technical support.

4.4 Viewing Training Job Events
Any key event of a training job will be recorded at the backend after the training
job is displayed for you. You can check events on the training job details page.

This helps you better understand the running process of a training job and locate
faults more accurately when a task exception occurs. The following job events are
supported:

● Training job created.
● Training job failures:
● Preparations timed out. The possible cause is that the cross-region algorithm

synchronization or creating shared storage timed out.
● The training job is queuing and awaiting resource allocation.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 36

● Failed to be queued.
● The training job starts to run.
● Training job executed.
● Failed to run the training job.
● The training job is preempted.
● The system detects that your training job may be suspended. Go to the job

details page to view the cause and handle the issue.
● The training job has been restarted.
● The training job has been manually stopped.
● The training job has been stopped. (Maximum running duration: 1 hour)
● The training job has been stopped. (Maximum running duration: 3 hours)
● The training job has been manually deleted.
● Billing information synchronized.
● [worker-0] The training environment is being pre-checked.
● [worker-0] [Duration: second] Pre-check completed.
● [worker-0] [Duration: second] Pre-check failed. Error: xxx
● [worker-0] [Duration: second] Pre-check failed. Error: xxx
● [worker-0] The training code is being downloaded.
● [worker-0] [Duration: second] Training code downloaded.
● [worker-0] [Duration: second] Failed to download the training code. Failure

cause:
● [worker-0] The training input is being downloaded.
● [worker-0] [Duration: second] Training input (parameter: xxx) downloaded.
● [worker-0] [Duration: second] Failed to download the training input

(parameter: xxx). Failure cause:
● [worker-0] Python dependency packages are being installed. Import the

following files:
● [worker-0] [Duration: second] Python dependency packages installed. Import

the following files:
● [worker-0] The training job starts to run.
● [worker-0] Training job executed.
● [worker-0] The training input is being uploaded.
● [worker-0] [Duration: second] Training output (parameter: xxx) uploaded.

During the training process, key events can be manually or automatically
refreshed.

Procedure
1. In the navigation pane of the ModelArts management console, choose

Training Management > Training Jobs. In the training job list, click a job
name.

2. Click Events to view events.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 37

Figure 4-8 Events

4.5 Viewing the Resource Usage of a Training Job

Operations

You can view the resource usage of a compute node in the Resource Usages
window. The data of at most the last three days can be displayed. When the
resource usage window is opened, the data is loading and refreshed periodically.

Operation 1: If a training job uses multiple compute nodes, choose a node from
the drop-down list box to view its metrics.

Operation 2: Click cpuUsage, gpuMemUsage, gpuUtil, memUsage,
npuMemUsage, or npuUtil to show or hide the usage chart of the parameter.

Operation 3: Hover the cursor on the graph to view the usage at the specific time.

Figure 4-9 Resource Usages

Table 4-8 Parameters

Parameter Description

cpuUsage CPU usage

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 38

Parameter Description

gpuMemUsa
ge

GPU memory usage

gpuUtil GPU usage

memUsage Memory usage

npuMemUsa
ge

NPU memory usage

npuUtil NPU usage

Alarms of Job Resource Usage

You can view the job resource usage on the training job list page. If the average
GPU/NPU usage of a job is lower than 50%, an alarm is displayed in the training
job list.

Figure 4-10 Job resource usage in the job list

The job resource usage here involves only GPU and NPU resources. The method of
calculating the average GPU/NPU usage of a job is: Summarize the usage of each
GPU/NPU accelerator card at each time point of the job and calculate the average
value. If a job uses multiple compute nodes, summarize the usage of all compute
nodes and then obtain the average usage of a single job.

Improving Job Resource Utilization
● Increasing the value of batch_size increases GPU and NPU usage. You must

decide the batch size that will not cause a memory overflow.

● If the time for reading data in a batch is longer than the time for GPUs or
NPUs to calculate data in a batch, GPU or NPU usage may fluctuate. In this
case, optimize the performance of data reading and data augmentation. For
example, read data in parallel or use tools such as NVIDIA Data Loading
Library (DALI) to improve the data augmentation speed.

● If a model is large and frequently saved, GPU or NPU usage is affected. In this
case, do not save models frequently. Similarly, make sure that other non-
GPU/NPU operations, such as log printing and training metric saving, do not
affect the training process for too much time.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 39

4.6 Evaluation Results
After a training job has been executed, ModelArts evaluates your model and
provides optimization diagnosis and suggestions.

● When you use a built-in algorithm to create a training job, you can view the
evaluation result without any configurations. The system automatically
provides optimization suggestions based on your model metrics. Read the
suggestions and guidance on the page carefully to further optimize your
model.

● For a training job created by writing a training script or using a custom image,
you need to add the evaluation code to the training code so that you can
view the evaluation result and diagnosis suggestions after the training job is
complete.

NO TE

● Only validation sets of the image type are supported.

● You can add the evaluation code only when the training scripts of the following
frequently-used frameworks are used:

● TF-1.13.1-python3.6

● TF-2.1.0-python3.6

● PyTorch-1.4.0-python3.6

This section describes how to use the evaluation code in a training job. To adapt
and modify the training code, three steps are involved, Adding the Output Path,
Copying the Dataset to the Local Host, and Mapping the Dataset Path to OBS.

Adding the Output Path

The code for adding the output path is simple. That is, add a path for storing the
evaluation result file to the code, which is called train_url, that is, the training
output path on the console. Add train_url to the analysis function and use
save_path to obtain train_url. The sample code is as follows:

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('model_url', '', 'path to saved model')
tf.app.flags.DEFINE_string('data_url', '', 'path to output files')
tf.app.flags.DEFINE_string('train_url', '', 'path to output files')
tf.app.flags.DEFINE_string('adv_param_json',
 '{"attack_method":"FGSM","eps":40}',
 'params for adversarial attacks')
FLAGS(sys.argv, known_only=True)

...

analyse
res = analyse(
 task_type=task_type,
 pred_list=pred_list,
 label_list=label_list,
 name_list=file_name_list,
 label_map_dict=label_dict,
 save_path=FLAGS.train_url)

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 40

Copying the Dataset to the Local Host
Copying a dataset to the local host is to prevent the OBS connection from being
interrupted due to long-time access. Therefore, copy the dataset to the local host
before performing operations.

There are two methods for copying datasets. The recommended method is to use
the OBS path.

● OBS path (recommended)
Call the copy_parallel API of MoXing to copy the corresponding OBS path.

● Dataset in ModelArts data management (manifest file format)
Call the copy_manifest API of MoXing to copy the file to the local host and
obtain the path of the new manifest file. Then, use SDK to parse the new
manifest file.

NO TE

ModelArts data management is being upgraded and is invisible to users who have not used
data management. It is recommended that new users store their training data in OBS
buckets.

if data_path.startswith('obs://'):
 if '.manifest' in data_path:
 new_manifest_path, _ = mox.file.copy_manifest(data_path, '/cache/data/')
 data_path = new_manifest_path
 else:
 mox.file.copy_parallel(data_path, '/cache/data/')
 data_path = '/cache/data/'
 print('------------- download dataset success ------------')

Mapping the Dataset Path to OBS
The actual path of the image file, that is, the OBS path, needs to be entered in the
JSON body. Therefore, after analysis and evaluation are performed on the local
host, the original local dataset path needs to be mapped to the OBS path, and the
new list needs to be sent to the analysis API.

If the OBS path is used as the input of data_url, you only need to replace the
string of the local path.

if FLAGS.data_url.startswith('obs://'):
 for idx, item in enumerate(file_name_list):
 file_name_list[idx] = item.replace(data_path, FLAGS.data_url)

If the manifest file is used, the original manifest file needs to be parsed again to
obtain the list and then the list is sent to the analysis API.

if or FLAGS.data_url.startswith('obs://'):
 if 'manifest' in FLAGS.data_url:
 file_name_list = []
 manifest, _ = get_sample_list(
 manifest_path=FLAGS.data_url, task_type='image_classification')
 for item in manifest:
 if len(item[1]) != 0:
 file_name_list.append(item[0])

An example code for image classification that can be used to create training jobs
is as follows:

import json
import logging

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 41

import os
import sys
import tempfile

import h5py
import numpy as np
from PIL import Image

import moxing as mox
import tensorflow as tf
from deep_moxing.framework.manifest_api.manifest_api import get_sample_list
from deep_moxing.model_analysis.api import analyse, tmp_save
from deep_moxing.model_analysis.common.constant import TMP_FILE_NAME

logging.basicConfig(level=logging.DEBUG)

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('model_url', '', 'path to saved model')
tf.app.flags.DEFINE_string('data_url', '', 'path to output files')
tf.app.flags.DEFINE_string('train_url', '', 'path to output files')
tf.app.flags.DEFINE_string('adv_param_json',
 '{"attack_method":"FGSM","eps":40}',
 'params for adversarial attacks')
FLAGS(sys.argv, known_only=True)

def _preprocess(data_path):
 img = Image.open(data_path)
 img = img.convert('RGB')
 img = np.asarray(img, dtype=np.float32)
 img = img[np.newaxis, :, :, :]
 return img

def softmax(x):
 x = np.array(x)
 orig_shape = x.shape
 if len(x.shape) > 1:
 # Matrix
 x = np.apply_along_axis(lambda x: np.exp(x - np.max(x)), 1, x)
 denominator = np.apply_along_axis(lambda x: 1.0 / np.sum(x), 1, x)
 if len(denominator.shape) == 1:
 denominator = denominator.reshape((denominator.shape[0], 1))
 x = x * denominator
 else:
 # Vector
 x_max = np.max(x)
 x = x - x_max
 numerator = np.exp(x)
 denominator = 1.0 / np.sum(numerator)
 x = numerator.dot(denominator)
 assert x.shape == orig_shape
 return x

def get_dataset(data_path, label_map_dict):
 label_list = []
 img_name_list = []
 if 'manifest' in data_path:
 manifest, _ = get_sample_list(
 manifest_path=data_path, task_type='image_classification')
 for item in manifest:
 if len(item[1]) != 0:
 label_list.append(label_map_dict.get(item[1][0]))
 img_name_list.append(item[0])
 else:
 continue
 else:
 label_name_list = os.listdir(data_path)

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 42

 label_dict = {}
 for idx, item in enumerate(label_name_list):
 label_dict[str(idx)] = item
 sub_img_list = os.listdir(os.path.join(data_path, item))
 img_name_list += [
 os.path.join(data_path, item, img_name) for img_name in sub_img_list
]
 label_list += [label_map_dict.get(item)] * len(sub_img_list)
 return img_name_list, label_list

def deal_ckpt_and_data_with_obs():
 pb_dir = FLAGS.model_url
 data_path = FLAGS.data_url

 if pb_dir.startswith('obs://'):
 mox.file.copy_parallel(pb_dir, '/cache/ckpt/')
 pb_dir = '/cache/ckpt'
 print('------------- download success ------------')
 if data_path.startswith('obs://'):
 if '.manifest' in data_path:
 new_manifest_path, _ = mox.file.copy_manifest(data_path, '/cache/data/')
 data_path = new_manifest_path
 else:
 mox.file.copy_parallel(data_path, '/cache/data/')
 data_path = '/cache/data/'
 print('------------- download dataset success ------------')
 assert os.path.isdir(pb_dir), 'Error, pb_dir must be a directory'
 return pb_dir, data_path

def evalution():
 pb_dir, data_path = deal_ckpt_and_data_with_obs()
 index_file = os.path.join(pb_dir, 'index')
 try:
 label_file = h5py.File(index_file, 'r')
 label_array = label_file['labels_list'][:].tolist()
 label_array = [item.decode('utf-8') for item in label_array]
 except Exception as e:
 logging.warning(e)
 logging.warning('index file is not a h5 file, try json.')
 with open(index_file, 'r') as load_f:
 label_file = json.load(load_f)
 label_array = label_file['labels_list'][:]
 label_map_dict = {}
 label_dict = {}
 for idx, item in enumerate(label_array):
 label_map_dict[item] = idx
 label_dict[idx] = item
 print(label_map_dict)
 print(label_dict)

 data_file_list, label_list = get_dataset(data_path, label_map_dict)

 assert len(label_list) > 0, 'missing valid data'
 assert None not in label_list, 'dataset and model not match'

 pred_list = []
 file_name_list = []
 img_list = []

 for img_path in data_file_list:
 img = _preprocess(img_path)
 img_list.append(img)
 file_name_list.append(img_path)

 config = tf.ConfigProto()
 config.gpu_options.allow_growth = True
 config.gpu_options.visible_device_list = '0'

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 43

 with tf.Session(graph=tf.Graph(), config=config) as sess:
 meta_graph_def = tf.saved_model.loader.load(
 sess, [tf.saved_model.tag_constants.SERVING], pb_dir)
 signature = meta_graph_def.signature_def
 signature_key = 'predict_object'
 input_key = 'images'
 output_key = 'logits'
 x_tensor_name = signature[signature_key].inputs[input_key].name
 y_tensor_name = signature[signature_key].outputs[output_key].name
 x = sess.graph.get_tensor_by_name(x_tensor_name)
 y = sess.graph.get_tensor_by_name(y_tensor_name)
 for img in img_list:
 pred_output = sess.run([y], {x: img})
 pred_output = softmax(pred_output[0])
 pred_list.append(pred_output[0].tolist())

 label_dict = json.dumps(label_dict)
 task_type = 'image_classification'

 if FLAGS.data_url.startswith('obs://'):
 if 'manifest' in FLAGS.data_url:
 file_name_list = []
 manifest, _ = get_sample_list(
 manifest_path=FLAGS.data_url, task_type='image_classification')
 for item in manifest:
 if len(item[1]) != 0:
 file_name_list.append(item[0])
 for idx, item in enumerate(file_name_list):
 file_name_list[idx] = item.replace(data_path, FLAGS.data_url)
 # analyse
 res = analyse(
 task_type=task_type,
 pred_list=pred_list,
 label_list=label_list,
 name_list=file_name_list,
 label_map_dict=label_dict,
 save_path=FLAGS.train_url)

if __name__ == "__main__":
 evalution()

4.7 Viewing Environment Variables of a Training
Container

What Is an Environment Variable

This section describes environment variables preset in a training container. The
environment variables include:

● Path environment variables

● Environment variables of a distributed training job

● Nvidia Collective multi-GPU Communication Library (NCCL) environment
variables

● OBS environment variables

● Environment variables of the PIP source

● Environment variables of the API Gateway address

● Environment variables of job metadata

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 44

Configuring Environment Variables

When you create a training job, you can add environment variables or modify
environment variables preset in the training container.

Figure 4-11 Setting environment variables

Environment Variables Preset in a Training Container

The following tables list environment variables preset in a training container,
including Table 4-9, Table 4-10, Table 4-11, Table 4-12, Table 4-13, Table 4-14,
and Table 4-15.

The environment variable values are examples.

Table 4-9 Path environment variables

Variable Description Example

PATH Executable file paths PATH=/usr/local/nvidia/bin:/usr/
local/cuda/bin:/usr/local/
sbin:/usr/local/bin:/usr/
sbin:/usr/bin:/sbin:/bin

LD_LIBRARY_P
ATH

Dynamic load library
paths

LD_LIBRARY_PATH=/usr/local/
seccomponent/lib:/usr/local/
cuda/lib64:/usr/local/cuda/
compat:/root/miniconda3/
lib:/usr/local/nvidia/lib:/usr/
local/nvidia/lib64

LIBRARY_PATH Static library paths LIBRARY_PATH=/usr/local/cuda/
lib64/stubs

MA_HOME Main directory of a
training job

MA_HOME=/home/ma-user

MA_JOB_DIR Parent directory of the
training algorithm folder

MA_JOB_DIR=/home/ma-user/
modelarts/user-job-dir

MA_MOUNT_P
ATH

Path mounted to a
ModelArts training
container, which is used
to temporarily store
training algorithms,
algorithm input,
algorithm output, and
logs

MA_MOUNT_PATH=/home/ma-
user/modelarts

MA_LOG_DIR Training log directory MA_LOG_DIR=/home/ma-user/
modelarts/log

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 45

Variable Description Example

MA_SCRIPT_IN
TERPRETER

Training script interpreter MA_SCRIPT_INTERPRETER=

WORKSPACE Training algorithm
directory

WORKSPACE=/home/ma-user/
modelarts/user-job-dir/code

Table 4-10 Environment variables of a distributed training job

Variable Description Example

MA_CURRENT_
IP

IP address of a job
container.

MA_CURRENT_IP=192.168.23.38

MA_NUM_GPU
S

Number of accelerator
cards in a job container.

MA_NUM_GPUS=8

MA_TASK_NAM
E

Name of a job container,
for example:
● worker in MindSpore

and PyTorch.
● learner or worker in

reinforcement learning
engines.

● ps or worker in
TensorFlow.

MA_TASK_NAME=worker

MA_NUM_HOS
TS

Compute nodes required
for a training job.

MA_NUM_HOSTS=4

VC_TASK_INDE
X

Sequence number of a
job container for multi-
node training. The value
of the first container is 0.

VC_TASK_INDEX=0

VC_WORKER_N
UM

Compute nodes required
for a training job.

VC_WORKER_NUM=4

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 46

Variable Description Example

VC_WORKER_H
OSTS

Domain name of each
node for multi-node
training. Use commas (,)
to separate the domain
names in sequence. You
can obtain the IP address
through domain name
resolution.

VC_WORKER_HOSTS=modelarts
-job-
a0978141-1712-4f9b-8a83-0000
00000000-worker-0.modelarts-
job-
a0978141-1712-4f9b-8a83-0000
00000000,modelarts-job-
a0978141-1712-4f9b-8a83-0000
00000000-worker-1.ob-
a0978141-1712-4f9b-8a83-0000
00000000,modelarts-job-
a0978141-1712-4f9b-8a83-0000
00000000-worker-2.modelarts-
job-
a0978141-1712-4f9b-8a83-0000
00000000,ob-
a0978141-1712-4f9b-8a83-0000
00000000-worker-3.modelarts-
job-
a0978141-1712-4f9b-8a83-0000
00000000

Table 4-11 NCCL environment variables

Variable Description Example

NCCL_VERSION NCCL version NCCL_VERSION=2.7.8

NCCL_DEBUG NCCL log level NCCL_DEBUG=INFO

NCCL_IB_HCA InfiniBand NIC to use for
communication

NCCL_IB_HCA=^mlx5_bond_0

NCCL_SOCKET_
IFNAME

IP interface to use for
communication

NCCL_SOCKET_IFNAME=bond0,
eth0

Table 4-12 OBS environment variables

Variable Description Example

S3_ENDPOINT OBS endpoint S3_ENDPOINT=https://
obs.region.example.com

S3_VERIFY_SSL Whether to use SSL to
access OBS

S3_VERIFY_SSL=0

S3_USE_HTTPS Whether to use HTTPS to
access OBS

S3_USE_HTTPS=1

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 47

Table 4-13 Environment variables of the PIP source and API Gateway address

Variable Description Example

MA_PIP_HOST Domain name of the PIP
source

MA_PIP_HOST=repo.example.co
m

MA_PIP_URL Address of the PIP source MA_PIP_URL=http://
repo.example.com/repository/
pypi/simple/

MA_APIGW_EN
DPOINT

ModelArts API Gateway
address

MA_APIGW_ENDPOINT=https:/
/
modelarts.region.example.exa
mple.com

Table 4-14 Environment variables of job metadata

Variable Description Example

MA_CURRENT_I
NSTANCE_NAM
E

Name of the current node
for multi-node training

MA_CURRENT_INSTANCE_NAM
E=modelarts-job-
a0978141-1712-4f9b-8a83-000
000000000-worker-1

Table 4-15 Precheck environment variables

Variable Description Example

MA_SKIP_IMAGE
_DETECT

Whether to enable
ModelArts precheck. The
default value is 1, which
indicates that the pre-
check is enabled; the
value 0 indicates that the
pre-check is disabled.
It is a good practice to
enable precheck to detect
node and driver faults
before they affect
services.

1

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 48

4.8 Stopping, Rebuilding, or Searching for a Training
Job

Saving as an Algorithm

To modify the algorithm of a training job, click Save As Algorithm in the upper
right corner of the training job details page.

On the algorithm creation page, the algorithm parameters for the last training job
are automatically set. You can modify the settings.

NO TE

This function is not supported for algorithms subscribed in AI Hub.

Stopping a Training Job

In the training job list, click Stop in the Operation column of a training job that is
in the creating, pending, or running state to stop the job.

A training job in the completed, failed, terminated, or abnormal state cannot be
stopped.

Rebuilding a Training Job

If you are not satisfied with a created training job, click Rebuild in the Operation
column to rebuild it. The page for creating a training job is displayed. On this
page, the parameter settings for the previous training job are automatically
retained. You only need to modify target parameter settings.

Searching for a Training Job

If you log in to ModelArts using an IAM account, all training jobs under this
account are displayed in the training job list. To quickly search for a training job,
use the following methods:

Method 1: Enable Only my jobs. Then, only jobs created under the current IAM
user account are displayed in the training job list.

Method 2: Search for jobs by name, ID, job type, status, creation time, algorithm,
and resource pool.

Method 3: Click the refresh button in the upper right corner of the job list to
refresh it.

Method 4: Configure the custom columns and other basic settings.

4.9 CloudShell

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 49

4.9.1 Logging In to a Training Container Using Cloud Shell

Application Scenarios
You can use Cloud Shell provided by the ModelArts console to log in to a running
training container.

Constraints
The training container must be running in a dedicated resource pool.

Preparation: Assigning the Cloud Shell Permission to an IAM User
1. Log in to the console as a tenant user, click your username in the upper right

corner, and choose Identity and Access Management from the drop-down
list to switch to the IAM console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane and then click Create Custom Policy in the upper right
corner. On the page that appears, configure parameters and click OK.
– Policy Name: Enter a policy name, for example, Using Cloud Shell to

access a running job.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:trainJob:exec, and default resources.
3. In the navigation pane, choose User Groups. Then, click Authorize in the

Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.
After the configuration, all users in the user group have the permission to use
Cloud Shell to log in to a running training container.
If no user group is available, create one, add users to it through user group
management, and configure authorization for the user group. If the target
user is not in a user group, add the user to a user group through user group
management.

Using Cloud Shell
1. Configure parameters based on Preparation: Assigning the Cloud Shell

Permission to an IAM User.
2. On the ModelArts console, choose Training Management > Training Jobs.

Go to the details page of the target training job and log in to the training
container on the Cloud Shell tab.
Verify that the login is successful, as shown in the following figure.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 50

Figure 4-12 Cloud Shell

If the job is not running or the permission is insufficient, Cloud Shell cannot
be used. In this case, locate the fault as prompted.

Figure 4-13 Error message

4.10 Releasing Training Job Resources
Release resources of a training job when not in use.
● On the Training Jobs page, click Delete in the Operation column. In the

displayed dialog box, click OK to delete the training job.
● Go to OBS and delete the OBS bucket and files used by the training job.

After the resources are released, check the resource usage on the Dashboard
page.

ModelArts
Model Training 4 Performing a Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 51

5 Training Experiment

5.1 Introduction to Experiment
An experiment is a job management capability provided by ModelArts. You can
add training jobs to experiments for management.

Manage training jobs in an experiment by referring to the following instructions:

● For details about how to add a training job to an experiment, see Adding a
Training Job to an Experiment.

● For details about how to view experiment information, see Viewing an
Experiment.

● For details about how to delete an experiment, see Deleting an Experiment.

5.2 Adding a Training Job to an Experiment
To add a training job to an experiment, configure Experiment when creating a
training job. The options are as follows:

● Create new: An experiment can only be created when you create a training
job. If you select this option, enter a new experiment name. After the job is
submitted, the experiment is created and the job is added to the new
experiment. The experiment name will be checked. If the experiment name
already exists, the job cannot be submitted.

● Use existing: Select an existing experiment from the drop-down list box to
add the job to the existing experiment.

● Not required: Select this option if you do not want to manage your job
through an experiment. The experiment tab page of Training Management
does not display a job that has not been added to an experiment.

Creating a Job to Be Added to an Experiment
Log in to the ModelArts management console, choose Training Management >
Training Jobs (New), and click Create Training Job in the upper right corner. The
Training page is displayed.

ModelArts
Model Training 5 Training Experiment

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 52

On this page, you can configure Experiment, which defaults to Create new. In
this case, enter a name for the new experiment. Then, an experiment is created
after you create the training job.

Figure 5-1 Creating a training job

Adding a Created Job to an Experiment
Log in to the ModelArts console, choose Training Management > Training Jobs
(New), and click Rebuild in the Operation column of a target job. Alternatively,
click the job name or ID in the job list. On the job details page, click Rebuild in
the upper right corner.

● For a job that has not been added to an experiment, select Create new by
default and enter a name for the new experiment. Then, an experiment is
created after you create the training job.

● For a job that has been added to an experiment, select Use existing by
default and select the experiment where the source job is.

Figure 5-2 Rebuilding a training job

5.3 Viewing an Experiment

Viewing the Experiment List
1. Log in to the ModelArts console. In the left navigation pane, choose Training

Management > Training Jobs. The Training Jobs page is displayed.
2. Click Experiments to go to the Experiments tab page. The experiment list

displays some basic experiment information.

ModelArts
Model Training 5 Training Experiment

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 53

Table 5-1 Basic experiment information

Parameter Description

Experiment Name Experiment name, which can be
changed on the experiment details
page

Training Jobs Number of training jobs in an
experiment

Created Time when an experiment is created

Modified At Time when any of the following
occurs:
● Changing the experiment name
● Modifying the description of the

experiment
● Adding a training job to or

deleting a training job from the
experiment

Description Experiment description, which can
be modified

Operation You can delete the experiment.

Figure 5-3 Basic experiment information

– You can search for experiments by experiment name, number of training
jobs, creation time, modification time, and description.

– You can click the refresh button in the upper right corner of the job list to
refresh the job list.

– You can click the setting button in the upper right corner of the
experiment list to select items you want to display in the experiment list.

– You can click the arrow in the table header to sort experiments.

Viewing Experiment Details
In the experiment list, click an experiment name to go to the experiment details
page. Basic experiment information is displayed in the upper part of the
experiment details page, and the job list of the experiment is displayed in the
lower part of the experiment details page.

ModelArts
Model Training 5 Training Experiment

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 54

Figure 5-4 Viewing experiment details

● You can edit the name and description of an experiment.

Figure 5-5 Editing the name and description of an experiment

● You can click Only my jobs to view the jobs that you have created and
included in the experiment.

NO TE

By default, if an account has multiple IAM users, only the jobs of the current IAM user
is displayed.

● You can search for jobs by name, ID, algorithm, status, creation time, job type,
or resource pool.

● You can click the refresh button in the upper right corner of the job list to
refresh the job list.

● You can click the setting button in the upper right corner of the job list to
select items you want to display in the job list.

5.4 Deleting an Experiment
You can click Delete on the experiment list page or click Delete Experiment in
the upper right corner of the experiment details page to delete an experiment. All
jobs of the experiment are displayed on the Delete Experiment page. Enter
DELETE and click OK to confirm the deletion.

CA UTION

After an experiment is deleted, all jobs in the experiment will be deleted
accordingly and cannot be restored. Therefore, exercise cautions when performing
this operation.

ModelArts
Model Training 5 Training Experiment

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 55

Figure 5-6 Deleting an experiment

ModelArts
Model Training 5 Training Experiment

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 56

6 Advanced Training Operations

6.1 Selecting a Training Mode
ModelArts provides different training modes for MindSpore engines and enables
you to obtain different diagnosis information based on actual scenarios.

On the training job creation page, you can select General, High performance, or
Fault diagnosis for training mode. The default value is General. For details about
debugging information in General mode, see Training Log Details.

Use High performance and Fault diagnosis in the following scenarios:

● High performance: In high performance mode, certain O&M functions will be
adjusted or even disabled to maximally accelerate the running speed, but this
will deteriorate fault locating. This mode is suitable for stable networks
requiring high performance.

● Fault diagnosis: In fault diagnosis mode, certain O&M functions will be
enabled or adjusted to collect more information for locating faults. This mode
provides fault diagnosis. You can select a diagnosis type as required.

Figure 6-1 Mode selection

The following table details debugging information obtained in each mode.

Table 6-1 Debugging information obtained in each mode

Debugging
Information

Gener
al

High
perfor
manc
e

Fault
diagn
osis

Description

MindSpore log
levels

Info
level

Error
level

Info
level

MindSpore framework runtime
log

ModelArts
Model Training 6 Advanced Training Operations

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 57

Debugging
Information

Gener
al

High
perfor
manc
e

Fault
diagn
osis

Description

Running Data
Recorder (RDR)

Disabl
ed

Disabl
ed

Enabl
ed

If a running exception occurs, the
recorded MindSpore data is
automatically exported to help
locate the exception cause.
Different data is exported for
different exceptions.
For details about RDR, see
MindSpore Documentation.

analyze_fail.dat Enabled by default and
uploaded to the
training job log path

Graph build failure information is
automatically exported for
inference process analysis.

Dump data Enabled by default and
uploaded to the
training job log path

Dump data is exported when an
exception occurs during backend
running.

In the fault diagnosis mode, after the fault diagnosis function is enabled, you can
view the following fault diagnosis data: The following data is stored in the OBS
directory in the training log path.

Description of the training output log file in the fault diagnosis mode:

{obs-log-path}/
 modelarts-job-{job-id}-worker-{index}.log # Displayed log summary
 modelarts-job-{job-id}-proc-rank-{rank-id}-device-{device-id}.txt # Displayed logs of each device
 modelarts-job-{job-id}/
 ascend/
 npu_collect/rank_{id}/ # Output path for TFAdapter DUMP GRAPH and GE DUMP GRAPH,
generated only for the TensorFlow framework
 process_log/rank_{id}/ # Plog log path
 msnpureport/{task-index}/ # msnpureport tool execution logs, which you do not need to pay
attention to
 mindspore/
 log/ # MindSpore framework logs and MindSpore fault diagnosis data

Table 6-2 Fault diagnosis data of MindSpore

Category Description

CANN framework
logs and fault
diagnosis data

Host logs of the INFO or higher levels, including CANN
software stack logs and driver logs.

MindSpore
framework logs
and fault
diagnosis data

MindSpore framework logs of the INFO or higher levels.

ModelArts
Model Training 6 Advanced Training Operations

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 58

https://www.mindspore.cn/docs/programming_guide/zh-CN/r1.5/custom_debugging_info.html#running-data-recorder

Category Description

RDR file.
If a running exception occurs, the recorded MindSpore data
is automatically exported to help locate the exception
cause. Different data is exported for different exceptions.

analyze_fail.dat. Graph build failure information is
automatically exported for inference process analysis.

Dump data, which is exported when an exception occurs
during backend running

On the training job creation page, select the MindSpore algorithm and set
Resource Type to Ascend, and then you can enable fault diagnosis.

Figure 6-2 Resource Type

Figure 6-3 Enabling fault diagnosis

6.2 Automatic Recovery from a Training Fault

6.2.1 Training Fault Tolerance Check
During model training, a training failure may occur due to a hardware fault. For
hardware faults, ModelArts provides fault tolerance check to isolate faulty nodes
to improve user experience in training.

The fault tolerance check involves environment pre-check and periodic hardware
check. If any fault is detected during either of the checks, ModelArts automatically
isolates the faulty hardware and issues the training job again. In distributed
training, the fault tolerance check will be performed on all compute nodes used by
the training job.

The following shows four failure scenarios, among which the failure in scenario 4
is not caused by a hardware fault. You can enable fault tolerance in the other
three scenarios to automatically resume the training job.

● Scenario 1: The environment pre-check fails, and the hardware is faulty. Then,
ModelArts automatically isolates all faulty nodes and issues the training job
again.

ModelArts
Model Training 6 Advanced Training Operations

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 59

Figure 6-4 Pre-check failure and hardware fault

● Scenario 2: The environment pre-check fails but the hardware is functional.
Then, ModelArts automatically isolates all faulty nodes and issues the training
job again.

Figure 6-5 Pre-check failure but functional hardware

● Scenario 3: The environment pre-check is successful and the user service
starts. A hardware fault occurs and the user service exits unexpectedly. Then,
ModelArts automatically isolates all faulty nodes and issues the training job
again.

ModelArts
Model Training 6 Advanced Training Operations

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 60

Figure 6-6 Service failure and hardware fault

● Scenario 4: The environment pre-check is successful and the user service
starts. The hardware is functional. A fault occurs in the user service, the
training job ends in the failure state.

Figure 6-7 Service failure and functional hardware

After the faulty node is isolated, ModelArts creates a training job on new compute
nodes. If the resources provided by the resource pool are limited, the re-issued
training job will be queued with the highest priority. If the waiting time exceeds 30
minutes, the training job will automatically exit. This indicates that the resources
are so limited that the training job cannot start. In this case, buy a dedicated
resource pool to obtain dedicated resources.

If you use a dedicated resource pool to create a training job, the faulty nodes
identified during the fault tolerance check will be removed. The system
automatically adds healthy compute nodes to the dedicated resource pool. (This
function is coming soon.)

More details of a fault tolerance check:

ModelArts
Model Training 6 Advanced Training Operations

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 61

1. Enabling Fault Tolerance Check
2. Check Items and Conditions
3. Effect of a Fault Tolerance Check
4. After the environment pre-check is successful, any hardware fault will

interrupt the user service. Add the reload ckpt code logic to the training so
that the pre-trained model saved before the training is interrupted can be
obtained. For details, see Resumable Training and Incremental Training.

Enabling Fault Tolerance Check
To enable fault tolerance check, enable auto restart when creating a training job.

● Configure fault tolerance check on the ModelArts management console:
Enable Auto Restart on the ModelArts management console. Auto Restart is
disabled by default, indicating that the job will not be re-issued and the
environment pre-check will not be enabled. After Auto Restart is enabled, the
number of restart retries ranges from 1 to 3.

Figure 6-8 Auto Restart

● Configure fault tolerance check using an API:
Enable auto restart upon a fault using an API. When creating a training job,
configure the fault-tolerance/job-retry-num field in annotations of the
metadata field.
If the fault-tolerance/job-retry-num field is added, auto restart is enabled.
The value can be an integer ranging from 1 to 3. specifying the maximum
number of times that a job can be re-issued. If this hyperparameter is not
specified, the default value 0 is used, indicating that the job will not be re-
issued and the environment pre-check will not be enabled.

ModelArts
Model Training 6 Advanced Training Operations

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 62

Check Items and Conditions
Check Item Item

(Log
Keywor
d)

Execution
Condition

Requirements for a Check

Domain
name
detection

dns None The domain names of the
volcano containers in the .host
file in /etc/volcano are
successfully resolved.

Disk size -
Container
root directory

disk-size
root

None The directory is greater than 32
GB.

Disk size
- /dev/shm

disk-size
shm

None The directory is greater than 1
GB.

Disk size - /
cache

disk-size
cache

None The directory is greater than 32
GB.

ulimit check ulimit An IB network is
used.

● Maximum locked memory >
16000

● Open files > 1000000
● Stack size > 8000
● Maximum user processes >

1000000

GPU check gpu-
check

GPU and the v2
training engine are
used.

GPUs are detected.

Effect of a Fault Tolerance Check
● If the fault tolerance check is passed, the logs of the check items will be

recorded, indicating that the check items are successful. You can search for
the keyword item in the log file. A fault tolerance check minimizes reported
runtime faults.

● If a fault tolerance check fails, check failure logs will be recorded. You can
search for the keyword item in the log file to view the failure information.

ModelArts
Model Training 6 Advanced Training Operations

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 63

If the number of job restarts does not reach the specified time, the job will be
automatically issued again. You can search for keywords error,exiting to
obtain the logs recording a restarted job that ends with a failure.

Using reload ckpt to Resume an Interrupted Training
With fault tolerance enabled, if a training job is restarted due to a hardware fault,
you can obtain the pre-trained model in the code to restore the training to the
state before the restart. To do so, add reload ckpt to the code. For details, see
Resumable Training and Incremental Training.

6.3 Resumable Training and Incremental Training

Overview
Resumable training indicates that an interrupted training job can be automatically
resumed from the checkpoint where the previous training was interrupted. This
method is applicable to model training that takes a long time.

Incremental training is a method in which input data is continuously used to
extend the existing model's knowledge to further train the model.

Checkpoints are used to resume model training or incrementally train a model.

During model training, training results (including but not limited to epochs, model
weights, optimizer status, and scheduler status) are continuously saved. In this
way, an interrupted training job can be automatically resumed from the
checkpoint where the previous training was interrupted.

To resume a training job, load a checkpoint and use the checkpoint information to
initialize the training status. To do so, add reload ckpt to the code.

Resumable Training and Incremental Training in ModelArts
To resume model training or incrementally train a model in ModelArts, configure
Training Output.

When creating a training job, configure the data path to the training output, save
checkpoints in this data path, and set Predownload to Yes. If you set
Predownload to Yes, the system automatically downloads the checkpoint file in
the training output data path to a local directory of the training container before
the training job is started.

Figure 6-9 Configuring training output

Enable fault tolerance check (auto restart) for resumable training. On the training
job creation page, enable Auto Restart. If the environment pre-check fails, the
hardware is not functional, or the training job fails, ModelArts will automatically
issue the training job again.

ModelArts
Model Training 6 Advanced Training Operations

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 64

Figure 6-10 Auto Restart

6.4 Detecting Training Job Suspension

Overview

A training job may be suspended due to unknown reasons. If the suspension
cannot be detected promptly, resources cannot be released, leading to a waste. To
minimize resource cost and improve user experience, ModelArts provides
suspension detection for training jobs. With this function, suspension can be
automatically detected and displayed on the log details page. You can also enable
notification so that you can be promptly notified of job suspension.

Detection Rules

Determine whether a job is suspended based on the monitored job process status
and resource usage. A process is started to periodically monitor the changes of the
two metrics.

● Job process status: If the process I/O of a training job changes, the next
detection period starts. If the process I/O of the job remains unchanged in
multiple detection periods, the resource usage detection starts.

● Resource usage: If the process I/O remains unchanged, the system collects the
GPU usage within a certain period of time and determines whether the
resource usage changes based on the variance and median of the GPU usage
within the period. If the GPU usage is not changed, the job is suspended.

Constraints

Suspension can be detected only for training jobs that run on GPUs.

Procedure

Suspension detection is automatically performed during job running. No additional
configuration is required. After detecting that a job is suspended, the system
displays a message on the training job details page, indicating that the job may be
suspended. If you want to be notified of suspension (by SMS or email), enable
event notification on the job creation page.

Cases

Common cases and solutions to training job suspension are as follows:

ModelArts
Model Training 6 Advanced Training Operations

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 65

6.5 Permission to Set the Highest Job Priority
You can configure the priority when you create a training job using a new-version
dedicated resource pool. You can change the priority of a pending job. The value
ranges from 1 to 3. The default priority is 1, and the highest priority is 3. By
default, the job priority can be set to 1 or 2. After the permission to set the
highest job priority is configured, the priority can be set to 1 to 3.

Assigning the Permission to Set the Highest Job Priority to an IAM User
1. Log in to the management console as a tenant user, hover the cursor over

your username in the upper right corner, and choose Identity and Access
Management from the drop-down list to switch to the IAM management
console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
configure the following parameters.
– Policy Name: Enter a custom policy name, for example, Allowing Users

to Set the Highest Job Priority.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:trainJob:setHighPriority, and default resources.

Figure 6-11 Creating a custom policy

3. In the navigation pane, choose User Groups. Then, click Authorize in the
Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.
After the configuration, all users in the user group have the permission to use
Cloud Shell to log in to a running training container.

ModelArts
Model Training 6 Advanced Training Operations

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 66

If no user group is available, create a user group, add users using the user
group management function, and configure authorization. If the target user is
not in a user group, you can add the user to a user group through the user
group management function.

ModelArts
Model Training 6 Advanced Training Operations

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 67

7 Visualized Model Training

7.1 Introduction to Training Job Visualization
ModelArts notebook of the new version supports TensorBoard and MindInsight for
visualizing training jobs. In the development environment, use small datasets to
train and debug algorithms, during which you can check algorithm convergence
and detect issues to facilitate debugging.

You can create visualization jobs of TensorBoard and MindInsight types on
ModelArts.

Both TensorBoard and MindInsight effectively display the change trend of a
training job and the data used in the training.

● TensorBoard

TensorBoard effectively displays the computational graph of TensorFlow in the
running process, the trend of all metrics in time, and the data used in the
training. For more details about TensorBoard, see TensorBoard official
website.

TensorBoard visualization training jobs support only CPU and GPU flavors
based on TensorFlow 2.1, and PyTorch 1.4 and 1.8 images. Select images and
flavors based on the site requirements.

● MindInsight

MindInsight visualizes information such as scalars, images, computational
graphs, and model hyperparameters during training. It also provides functions
such as training dashboard, model lineage, data lineage, and performance
debugging, helping you train and debug models efficiently. MindInsight
supports MindSpore training jobs. For more information about MindInsight,
see MindSpore official website.

The following shows the images and flavors supported by MindInsight
visualization training jobs, and select images and flavors based on the site
requirements.

– MindSpore 1.2.0 (CPU or GPU)

– MindSpore 1.5.x or later (Ascend)

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 68

https://www.tensorflow.org/guide/#tensorboard
https://www.tensorflow.org/guide/#tensorboard
https://www.mindspore.cn/mindinsight/docs/en/master/index.html

You can use the summary file generated during model training to create a
visualization job in Notebook of DevEnviron.

● For details about how to create a MindInsight visualization job in a
development environment, see MindInsight Visualization Jobs.

● For details about how to create a TensorBoard visualization job in a
development environment, see TensorBoard Visualization Jobs.

7.2 MindInsight Visualization Jobs
ModelArts notebook of the new version supports MindInsight visualization jobs. In
the development environment, use small datasets to train and debug algorithms,
during which you can check algorithm convergence and detect issues to facilitate
debugging.

MindInsight visualizes information such as scalars, images, computational graphs,
and model hyperparameters during training. It also provides functions such as
training dashboard, model lineage, data lineage, and performance debugging,
helping you train and debug models efficiently. MindInsight supports MindSpore
training jobs. For more information about MindInsight, see MindSpore official
website.

MindSpore allows you to save data into the summary log file and obtain the data
on the MindInsight GUI.

Prerequisites
When using MindSpore to compile a training script, add the code for collecting the
summary record to the script to ensure that the summary file is generated in the
training result.

For details, see Collecting Summary Record.

Precautions
● To run a MindInsight training job in a development environment, start

MindInsight and then the training process.
● Only one-card single-node training is supported.

Creating a MindInsight Visualization Job in a Development Environment
Step 1 Create a Development Environment and Access It Online

Step 2 Upload the Summary Data

Step 3 Start MindInsight

Step 4 View Visualized Data on the Training Dashboard

Step 1 Create a Development Environment and Access It Online
On the ModelArts management console, choose DevEnviron > Notebook to
access notebook of the new version and create a MindSpore instance. After the
instance is created, click Open in the Operation column of the instance to access
it online.

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 69

https://www.mindspore.cn/mindinsight/docs/en/master/index.html
https://www.mindspore.cn/mindinsight/docs/en/master/index.html
https://www.mindspore.cn/mindinsight/docs/zh-CN/r1.5/summary_record.html

The following shows the images and flavors supported by MindInsight
visualization training jobs, and select images and flavors based on the site
requirements.
● MindSpore 1.2.0 (CPU or GPU)

Step 2 Upload the Summary Data
Summary data is required for using MindInsight visualization functions in
DevEnviron.

You can upload the summary data to the /home/ma-user/work/ directory in the
development environment or store it in the OBS parallel file system.

● For details about how to upload the summary data to the notebook path /
home/ma-user/work/, see Uploading Files to JupyterLab.

● If you want the notebook development environment to mount the OBS
parallel file system directory and read the summary data, upload the
summary file generated during model training to the OBS parallel file system
When MindInsight is started in a notebook instance, the notebook instance
automatically mounts the OBS parallel file system directory and reads the
summary data.

Step 3 Start MindInsight
Choose a way you like to start MindInsight in JupyterLab.

Figure 7-1 Starting MindInsight in JupyterLab

Method 1

1. Click to go to the JupyterLab development environment.
The .ipynb file is automatically created.

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 70

https://support.huaweicloud.com/eu/devtool-modelarts/modelarts_30_0042.html

2. Enter the following command in the dialog box:
%reload_ext mindinsight
%mindinsight --port {PORT} --summary-base-dir {SUMMARY_BASE_DIR}

Parameters:
– port {PORT}: web service port for visualization, which defaults to 8080. If

the default port 8080 is occupied, specify a port ranging from 1 to 65535.
– summary-base-dir {SUMMARY_BASE_DIR}: data storage path in the

development environment

▪ Local path of the development environment: ./work/xxx (relative
path) or /home/ma-user/work/xxx (absolute path)

▪ Path of the OBS parallel file system bucket: obs://xxx/
For example:
If the summary data is stored in /home/ma-user/work/ of the development environment, run the
following command:
%mindinsight --summary-base-dir /home/ma-user/work/xxx
or
If the summary data is stored in the OBS parallel file system, run the following command and the
development environment automatically mounts the storage path of the OBS parallel file system and
reads data.
%mindinsight --summary-base-dir obs://xxx/

Figure 7-2 MindInsight page (1)

Method 2

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 71

Click to go to the MindInsight page.

The directory /home/ma-user/work/ is read by default.

All project log names are displayed in the Runs area. You can view the logs of the
target project in the Runs area on the left.

Figure 7-3 MindInsight page (2)

Method 3

1. Choose View > Activate Command Palette, enter MindInsight in the search
box, and click Create a new MindInsight.

Figure 7-4 Create a new MindInsight

2. Enter the path of the summary data you want to view or the storage path of
the OBS parallel file system, and click CREATE.
– Local path of the development environment: ./summary (relative path)

or /home/ma-user/work/summary (absolute path)
– Path of the OBS parallel file system: obs://xxx/

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 72

Figure 7-5 Entering the summary data path

Figure 7-6 MindInsight page (3)

NO TE

A maximum of 10 MindInsight instances can be started using methods 2 and 3.

Method 4

Click and run the following command. (In this way, the UI cannot be
displayed.)

mindinsight start --summary-base-dir ./summary_dir

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 73

Figure 7-7 Opening MindInsight through Terminal

Step 4 View Visualized Data on the Training Dashboard
The training dashboard is important for MindInsight visualization. The training
dashboard allows for scalar visualization, parameter distribution visualization,
computational graph visualization, dataset graph visualization, image
visualization, and tensor visualization.

For more information, see Viewing Dashboard on the MindSpore official website.

Related Operations
To stop a MindInsight instance, perform the following steps:

● Method 1: Enter the following command in the .ipynb file window of
JupyterLab. Replace 8080 with the actual port number for starting
MindInsight.
!mindinsight stop --port 8080

● Method 2: Click . The MindInsight instance management page is
displayed, which shows all started MindInsight instances. Click SHUT DOWN
next to an instance to stop it.

Figure 7-8 Clicking SHUT DOWN to stop an instance

● Method 3: Click in the following figure to close all started MindInsight
instances.

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 74

https://www.mindspore.cn/mindinsight/docs/en/master/index.html

Figure 7-9 Stopping all started MindInsight instances

● Method 4 (not recommended): Close the MindInsight window on JupyterLab.
In this case, only the visualization window is closed, but the instance is still
running on the backend.

7.3 TensorBoard Visualization Jobs
ModelArts supports TensorBoard for visualizing training jobs. TensorBoard is a
visualization tool package of TensorFlow. It provides visualization functions and
tools required for machine learning experiments.

TensorBoard effectively displays the computational graph of TensorFlow in the
running process, the trend of all metrics in time, and the data used in the training.

Prerequisites
When you compile a training script, add the code for collecting the summary
record to the script to ensure that the summary file is generated in the training
result.

For details about how to add the code for collecting the summary record to a
TensorFlow-powered training script, see TensorFlow official website.

Precautions
● TensorBoard visualization training jobs support only CPU and GPU flavors

based on TensorFlow2.1, and PyTorch1.4, 1.8 or later images. Select images
and flavors based on the site requirements.

Process of Creating a TensorBoard Visualization Job in a Development
Environment

Step 1 Create a Development Environment and Access It Online

Step 2 Upload the Summary Data

Step 3 Start TensorBoard

Step 4 View Visualized Data on the Training Dashboard

Step 1 Create a Development Environment and Access It Online
On the ModelArts management console, choose DevEnviron > Notebook to
access notebook of the new version and create an instance using a TensorFlow or

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 75

https://www.tensorflow.org/tensorboard/get_started

PyTorch image. After the instance is created, click Open in the Operation column
of the instance to access it online.

TensorBoard visualization training jobs support only CPU and GPU flavors based
on TensorFlow2.1, and PyTorch1.4, 1.8 or later images. Select images and flavors
based on the site requirements.

Step 2 Upload the Summary Data
Summary data is required for using TensorBoard visualization functions in
DevEnviron.

You can upload the summary data to the /home/ma-user/work/ directory in the
development environment or store it in the OBS parallel file system.

● For details about how to upload the summary data to the notebook path /
home/ma-user/work/, see Uploading Files to JupyterLab.

● If you want the notebook development environment to mount the OBS
parallel file system directory and read the summary data, upload the
summary file generated during model training to the OBS parallel file system
When TensorBoard is started in a notebook instance, the notebook instance
automatically mounts the OBS parallel file system directory and reads the
summary data.

Step 3 Start TensorBoard
Choose a way you like to start TensorBoard in JupyterLab.

Figure 7-10 Starting TensorBoard in JupyterLab

NO TICE

You can upgrade TensorBoard to any version except 2.4.0. After the upgrade, only
method 1 starts the new-version TensorBoard. Using other methods will still start
TensorBoard 2.1.1.

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 76

https://support.huaweicloud.com/eu/devtool-modelarts/modelarts_30_0042.html

Method 1

1. Click to go to the JupyterLab development environment.
The .ipynb file is automatically created.

2. Enter the following command in the dialog box:
%reload_ext ma_tensorboard
%ma_tensorboard --port {PORT} --logdir {BASE_DIR}

Parameters:
– port {PORT}: web service port for visualization, which defaults to 8080. If

the default port 8080 is occupied, specify a port ranging from 1 to 65535.
– logdir {BASE_DIR}: data storage path in the development environment

▪ Local path of the development environment: ./work/xxx (relative
path) or /home/ma-user/work/xxx (absolute path)

▪ Path of the OBS parallel file system: obs://xxx/
For example:
If the summary data is stored in /home/ma-user/work/ of the development environment, run the
following command:
%ma_tensorboard --port {PORT} --logdir /home/ma-user/work/xxx
or
If the summary data is stored in the OBS parallel file system, run the following command and the
development environment automatically mounts the storage path of the OBS parallel file system and
reads data.
%ma_tensorboard --port {PORT} --logdir obs://xxx/

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 77

Figure 7-11 TensorBoard page (1)

Method 2

Click to go to the TensorBoard page.

The directory /home/ma-user/work/ is read by default.

All project log names are displayed in the Runs area. You can view the logs of the
target project in the Runs area on the left.

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 78

Figure 7-12 TensorBoard page (2)

Method 3

1. Choose View > Activate Command Palette, enter TensorBoard in the search
box, and click Create a new TensorBoard.

Figure 7-13 Creating a TensorBoard instance

2. Enter the path of the summary data you want to view or the storage path of
the OBS parallel file system.

– Local path of the development environment: ./summary (relative path)
or /home/ma-user/work/summary (absolute path)

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 79

– Path of the OBS parallel file system bucket: obs://xxx/

Figure 7-14 Entering the summary data path

Figure 7-15 TensorBoard page (3)

Method 4

Click and run the following command. (In this way, the UI cannot be
displayed.)

tensorboard --logdir ./log

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 80

Figure 7-16 Opening TensorBoard through Terminal

Step 4 View Visualized Data on the Training Dashboard

The training dashboard is important for TensorBoard visualization. The training
dashboard allows for scalar visualization, image visualization, and computational
graph visualization.

For more functions, see Get started with TensorBoard.

Related Operations

To stop a TensorBoard instance, perform the following steps:

● Method 1: Enter the following command in the .ipynb file window of
JupyterLab. (Obtain PID on the startup screen or using the command ps -ef |
grep tensorboard.)
!kill PID

● Method 2: Click . The TensorBoard instance management page is
displayed, which shows all started TensorBoard instances. Click SHUT DOWN
next to an instance to stop it.

Figure 7-17 Clicking SHUT DOWN to stop an instance

● Method 3: Click in the following figure to close all started TensorBoard
instances.

Figure 7-18 Stopping all started TensorBoard instances

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 81

https://www.tensorflow.org/tensorboard/get_started

● Method 4 (not recommended): Close the TensorBoard window on JupyterLab.
In this case, only the visualization window is closed, but the instance is still
running on the backend.

ModelArts
Model Training 7 Visualized Model Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 82

8 Distributed Training

8.1 Distributed Training
ModelArts provides the following capabilities:

● Extensive built-in images, meeting your requirements
● Custom development environments set up using built-in images
● Extensive tutorials, helping you quickly understand distributed training
● Distributed training debugging in development tools such as PyCharm, VS

Code, and JupyterLab

Constraints
● The development environment refers to the new-version Notebook provided

by ModelArts, excluding the old-version Notebook.
● If the notebook instance flavors are changed, you can only perform single-

node debugging. You cannot perform distributed debugging or submit remote
training jobs.

● Only the PyTorch and MindSpore AI frameworks can be used for multi-node
distributed debugging. If you want to use MindSpore, each node must be
equipped with eight cards.

● The OBS paths in the debugging code should be replaced with your OBS
paths.

● PyTorch is used to write debugging code in this document. The process is the
same for different AI frameworks. You only need to modify some parameters.

Related Chapters
● Single-Node Multi-Card Training Using DataParallel: describes single-node

multi-card training using DataParallel, and corresponding code modifications.
● Multi-Node Multi-Card Training Using DistributedDataParallel : describes

multi-node multi-card training using DistributedDataParallel, and
corresponding code modifications.

● Distributed Debugging Adaptation and Code Example: describes the
procedure and code example of distributed debugging adaptation.

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 83

● Sample Code of Distributed Training: provides a complete code sample of
distributed parallel training for the classification task of ResNet18 on the
CIFAR-10 dataset.

8.2 Single-Node Multi-Card Training Using DataParallel
This section describes how to perform single-node multi-card parallel training
based on the PyTorch engine.

For details about the distributed training using the MindSpore engine, see the
MindSpore official website.

Training Process
The process of single-node multi-card parallel training is as follows:

1. A model is copied to multiple GPUs.
2. Data of each batch is distributed evenly to each worker GPU.
3. Each GPU does its own forward propagation and an output is obtained.
4. The master GPU with device ID 0 collects the output of each GPU and

calculates the loss.
5. The master GPU distributes the loss to each worker GPU. Each GPU does its

own backward propagation and calculates the gradient.
6. The master GPU collects gradients, updates parameter settings, and

distributes the settings to each worker GPU.

The detailed flowchart is as follows.

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 84

https://www.mindspore.cn/docs/programming_guide/en/r1.5/distributed_training.html
https://www.mindspore.cn/docs/programming_guide/en/r1.5/distributed_training.html

Figure 8-1 Single-node multi-card parallel training

Advantages and Disadvantages
● Straightforward coding: Only one line of code needs to be modified.

● Bottlenecks in communication: The master GPU is used to update and
distribute parameter settings, which causes high communication costs.

● Unbalanced GPU loading: The master GPU is used to summarize outputs,
calculate loss, and update weights. Therefore, the GPU memory and usage are
higher than those of other GPUs.

Code Modifications

Model distribution: DataParallel(model)

The code is slightly changed and the following is a simple example:

import torch
class Net(torch.nn.Module):
 pass

model = Net().cuda()

DataParallel Begin
model = torch.nn.DataParallel(Net().cuda())
DataParallel End

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 85

8.3 Multi-Node Multi-Card Training Using
DistributedDataParallel

This section describes how to perform multi-node multi-card parallel training
based on the PyTorch engine.

Training Process
Compared with DataParallel, DistributedDataParallel can start multiple processes
for computing, greatly improving compute resource usage. Based on
torch.distributed, DistributedDataParallel has obvious advantages over
DataParallel in the distributed computing case. The process is as follows:

1. Initializes the process group.
2. Creates a distributed parallel model. Each process has the same model and

parameters.
3. Creates a distributed sampler for data distribution to enable each process to

load a unique subset of the original dataset in a mini batch.
4. Parameters are organized into buckets based on their shapes or sizes, which

are generally determined by each layer of the network that requires
parameter update in a neural network model.

5. Each process does its own forward propagation and computes its gradient.
6. After all parameter gradients at a bucket are obtained, communication is

performed for gradient averaging.
7. Each GPU updates model parameters.

The detailed flowchart is as follows.

Figure 8-2 Multi-node multi-card parallel training

Advantages
● Fast communication

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 86

● Balanced load
● Fast running speed

Code Modifications
● Multi-process startup
● New variables such as rank ID and world_size are used along with the TCP

protocol.
● Sampler for data distribution to avoid duplicate data between different

processes
● Model distribution: DistributedDataParallel(model)
● Model saved in GPU 0
import torch
class Net(torch.nn.Module):
 pass

model = Net().cuda()

DataParallel Begin
model = torch.nn.DataParallel(Net().cuda())
DataParallel End

Related Operations
● For details about distributed debugging adaptation and code example, see

Distributed Debugging Adaptation and Code Example.
● This document also provides a complete code sample of distributed parallel

training for the classification task of ResNet18 on the cifar10 dataset. For
details, see Sample Code of Distributed Training.

8.4 Distributed Debugging Adaptation and Code
Example

In DistributedDataParallel, each process loads a subset of the original dataset in a
batch, and finally the gradients of all processes are averaged as the final gradient.
Due to a large number of samples, a calculated gradient is more reliable, and a
learning rate can be increased.

This section describes the code of single-node training and distributed parallel
training for the classification job of ResNet18 on the CIFAR-10 dataset. Directly
execute the code to perform multi-node distributed training with CPUs or GPUs;
comment out the distributed training settings in the code to perform single-node
single-card training.

The training code contains three input parameters: basic training parameters,
distributed parameters, and data parameters. The distributed parameters are
automatically input by the platform. custom_data indicates whether to use
custom data for training. If this parameter is set to true, torch-based random data
is used for training and validation.

Dataset
CIFAR-10 dataset

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 87

In notebook instances, torchvision of the default version cannot be used to obtain
datasets. Therefore, the sample code provides three training data loading
methods.

Click CIFAR-10 python version on the download page to download the CIFAR-10
dataset.

● Download the CIFAR-10 dataset using torchvision.
● Download the CIFAR-10 dataset based on the URL and decompress the

dataset in a specified directory. The sizes of the training set and test set are
(50000, 3, 32, 32) and (10000, 3, 32, 32), respectively.

● Use Torch to obtain a random dataset similar to CIFAR-10. The sizes of the
training set and test set are (5000, 3, 32, 32) and (1000, 3, 32, 32),
respectively. The labels are still of 10 types. Set custom_data to true, and the
training task can be directly executed without loading data.

Training Code
In the following code, those commented with ### Settings for distributed training
and ... ### are code modifications for multi-node distributed training.

Do not modify the sample code. After the data path is changed to your path,
multi-node distributed training can be executed on ModelArts.

After the distributed code modifications are commented out, the single-node
single-card training can be executed. For details about the complete code, see
Sample Code of Distributed Training.

● Importing dependency packages
import datetime
import inspect
import os
import pickle
import random

import argparse
import numpy as np
import torch
import torch.distributed as dist
from torch import nn, optim
from torch.utils.data import TensorDataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from sklearn.metrics import accuracy_score

● Defining the method and random number for loading data (The code for
loading data is not described here due to its large amount.)
def setup_seed(seed):
 torch.manual_seed(seed)
 torch.cuda.manual_seed_all(seed)
 np.random.seed(seed)
 random.seed(seed)
 torch.backends.cudnn.deterministic = True

def get_data(path):
 pass

● Defining a network structure
class Block(nn.Module):

 def __init__(self, in_channels, out_channels, stride=1):
 super().__init__()
 self.residual_function = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 88

http://www.cs.toronto.edu/~kriz/cifar.html

 nn.BatchNorm2d(out_channels),
 nn.ReLU(inplace=True),
 nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(out_channels)
)

 self.shortcut = nn.Sequential()
 if stride != 1 or in_channels != out_channels:
 self.shortcut = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
 nn.BatchNorm2d(out_channels)
)

 def forward(self, x):
 out = self.residual_function(x) + self.shortcut(x)
 return nn.ReLU(inplace=True)(out)

class ResNet(nn.Module):

 def __init__(self, block, num_classes=10):
 super().__init__()
 self.conv1 = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(64),
 nn.ReLU(inplace=True))
 self.conv2 = self.make_layer(block, 64, 64, 2, 1)
 self.conv3 = self.make_layer(block, 64, 128, 2, 2)
 self.conv4 = self.make_layer(block, 128, 256, 2, 2)
 self.conv5 = self.make_layer(block, 256, 512, 2, 2)
 self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
 self.dense_layer = nn.Linear(512, num_classes)

 def make_layer(self, block, in_channels, out_channels, num_blocks, stride):
 strides = [stride] + [1] * (num_blocks - 1)
 layers = []
 for stride in strides:
 layers.append(block(in_channels, out_channels, stride))
 in_channels = out_channels
 return nn.Sequential(*layers)

 def forward(self, x):
 out = self.conv1(x)
 out = self.conv2(out)
 out = self.conv3(out)
 out = self.conv4(out)
 out = self.conv5(out)
 out = self.avg_pool(out)
 out = out.view(out.size(0), -1)
 out = self.dense_layer(out)
 return out

● Training and validation
def main():
 file_dir = os.path.dirname(inspect.getframeinfo(inspect.currentframe()).filename)

 seed = datetime.datetime.now().year
 setup_seed(seed)

 parser = argparse.ArgumentParser(description='Pytorch distribute training',
 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('--enable_gpu', default='true')
 parser.add_argument('--lr', default='0.01', help='learning rate')
 parser.add_argument('--epochs', default='100', help='training iteration')

 parser.add_argument('--init_method', default=None, help='tcp_port')
 parser.add_argument('--rank', type=int, default=0, help='index of current task')
 parser.add_argument('--world_size', type=int, default=1, help='total number of tasks')

 parser.add_argument('--custom_data', default='false')

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 89

 parser.add_argument('--data_url', type=str, default=os.path.join(file_dir, 'input_dir'))
 parser.add_argument('--output_dir', type=str, default=os.path.join(file_dir, 'output_dir'))
 args, unknown = parser.parse_known_args()

 args.enable_gpu = args.enable_gpu == 'true'
 args.custom_data = args.custom_data == 'true'
 args.lr = float(args.lr)
 args.epochs = int(args.epochs)

 if args.custom_data:
 print('[warning] you are training on custom random dataset, '
 'validation accuracy may range from 0.4 to 0.6.')

Settings for distributed training. Initialize DistributedDataParallel process. The init_method,
rank, and world_size parameters are automatically input by the platform. ###
 dist.init_process_group(init_method=args.init_method, backend="nccl", world_size=args.world_size,
rank=args.rank)
Settings for distributed training. Initialize DistributedDataParallel process. The init_method,
rank, and world_size parameters are automatically input by the platform. ###

 tr_set, val_set = get_data(args.data_url, custom_data=args.custom_data)

 batch_per_gpu = 128
 gpus_per_node = torch.cuda.device_count() if args.enable_gpu else 1
 batch = batch_per_gpu * gpus_per_node

 tr_loader = DataLoader(tr_set, batch_size=batch, shuffle=False)

Settings for distributed training. Create a sampler for data distribution to ensure that different
processes load different data. ###
 tr_sampler = DistributedSampler(tr_set, num_replicas=args.world_size, rank=args.rank)
 tr_loader = DataLoader(tr_set, batch_size=batch, sampler=tr_sampler, shuffle=False, drop_last=True)
Settings for distributed training. Create a sampler for data distribution to ensure that different
processes load different data. ###

 val_loader = DataLoader(val_set, batch_size=batch, shuffle=False)

 lr = args.lr * gpus_per_node
 max_epoch = args.epochs
 model = ResNet(Block).cuda() if args.enable_gpu else ResNet(Block)

Settings for distributed training. Build a DistributedDataParallel model.
 model = nn.parallel.DistributedDataParallel(model)
Settings for distributed training. Build a DistributedDataParallel model.

 optimizer = optim.Adam(model.parameters(), lr=lr)
 loss_func = torch.nn.CrossEntropyLoss()

 os.makedirs(args.output_dir, exist_ok=True)

 for epoch in range(1, max_epoch + 1):
 model.train()
 train_loss = 0

Settings for distributed training. DistributedDataParallel sampler. Random numbers are set for
the DistributedDataParallel sampler based on the current epoch number to avoid loading duplicate
data. ###
 tr_sampler.set_epoch(epoch)
Settings for distributed training. DistributedDataParallel sampler. Random numbers are set for
the DistributedDataParallel sampler based on the current epoch number to avoid loading duplicate
data. ###

 for step, (tr_x, tr_y) in enumerate(tr_loader):
 if args.enable_gpu:
 tr_x, tr_y = tr_x.cuda(), tr_y.cuda()
 out = model(tr_x)
 loss = loss_func(out, tr_y)
 optimizer.zero_grad()
 loss.backward()

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 90

 optimizer.step()
 train_loss += loss.item()
 print('train | epoch: %d | loss: %.4f' % (epoch, train_loss / len(tr_loader)))

 val_loss = 0
 pred_record = []
 real_record = []
 model.eval()
 with torch.no_grad():
 for step, (val_x, val_y) in enumerate(val_loader):
 if args.enable_gpu:
 val_x, val_y = val_x.cuda(), val_y.cuda()
 out = model(val_x)
 pred_record += list(np.argmax(out.cpu().numpy(), axis=1))
 real_record += list(val_y.cpu().numpy())
 val_loss += loss_func(out, val_y).item()
 val_accu = accuracy_score(real_record, pred_record)
 print('val | epoch: %d | loss: %.4f | accuracy: %.4f' % (epoch, val_loss / len(val_loader), val_accu),
'\n')

 if args.rank == 0:
 # save ckpt every epoch
 torch.save(model.state_dict(), os.path.join(args.output_dir, f'epoch_{epoch}.pth'))

if __name__ == '__main__':
 main()

● Result comparison
100-epoch cifar-10 dataset training is completed using two resource types
respectively: single-node single-card and two-node 16-card. The training
duration and test set accuracy are as follows.

Table 8-1 Training result comparison

Resource Type Single-Node Single-
Card

Two-Node 16-Card

Duration 60 minutes 20 minutes

Accuracy 80+ 80+

8.5 Sample Code of Distributed Training
The following provides a complete code sample of distributed parallel training for
the classification task of ResNet18 on the CIFAR-10 dataset.

The content of the training boot file main.py is as follows (if you need to execute
a single-node and single-card training job, delete the code for distributed
reconstruction):

import datetime
import inspect
import os
import pickle
import random
import logging

import argparse
import numpy as np

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 91

from sklearn.metrics import accuracy_score
import torch
from torch import nn, optim
import torch.distributed as dist
from torch.utils.data import TensorDataset, DataLoader
from torch.utils.data.distributed import DistributedSampler

file_dir = os.path.dirname(inspect.getframeinfo(inspect.currentframe()).filename)

def load_pickle_data(path):
 with open(path, 'rb') as file:
 data = pickle.load(file, encoding='bytes')
 return data

def _load_data(file_path):
 raw_data = load_pickle_data(file_path)
 labels = raw_data[b'labels']
 data = raw_data[b'data']
 filenames = raw_data[b'filenames']

 data = data.reshape(10000, 3, 32, 32) / 255
 return data, labels, filenames

def load_cifar_data(root_path):
 train_root_path = os.path.join(root_path, 'cifar-10-batches-py/data_batch_')
 train_data_record = []
 train_labels = []
 train_filenames = []
 for i in range(1, 6):
 train_file_path = train_root_path + str(i)
 data, labels, filenames = _load_data(train_file_path)
 train_data_record.append(data)
 train_labels += labels
 train_filenames += filenames
 train_data = np.concatenate(train_data_record, axis=0)
 train_labels = np.array(train_labels)

 val_file_path = os.path.join(root_path, 'cifar-10-batches-py/test_batch')
 val_data, val_labels, val_filenames = _load_data(val_file_path)
 val_labels = np.array(val_labels)

 tr_data = torch.from_numpy(train_data).float()
 tr_labels = torch.from_numpy(train_labels).long()
 val_data = torch.from_numpy(val_data).float()
 val_labels = torch.from_numpy(val_labels).long()
 return tr_data, tr_labels, val_data, val_labels

def get_data(root_path, custom_data=False):
 if custom_data:
 train_samples, test_samples, img_size = 5000, 1000, 32
 tr_label = [1] * int(train_samples / 2) + [0] * int(train_samples / 2)
 val_label = [1] * int(test_samples / 2) + [0] * int(test_samples / 2)
 random.seed(2021)
 random.shuffle(tr_label)
 random.shuffle(val_label)
 tr_data, tr_labels = torch.randn((train_samples, 3, img_size, img_size)).float(),
torch.tensor(tr_label).long()
 val_data, val_labels = torch.randn((test_samples, 3, img_size, img_size)).float(),

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 92

torch.tensor(
 val_label).long()
 tr_set = TensorDataset(tr_data, tr_labels)
 val_set = TensorDataset(val_data, val_labels)
 return tr_set, val_set
 elif os.path.exists(os.path.join(root_path, 'cifar-10-batches-py')):
 tr_data, tr_labels, val_data, val_labels = load_cifar_data(root_path)
 tr_set = TensorDataset(tr_data, tr_labels)
 val_set = TensorDataset(val_data, val_labels)
 return tr_set, val_set
 else:
 try:
 import torchvision
 from torchvision import transforms
 tr_set = torchvision.datasets.CIFAR10(root='./data', train=True,
 download=True, transform=transforms)
 val_set = torchvision.datasets.CIFAR10(root='./data', train=False,
 download=True, transform=transforms)
 return tr_set, val_set
 except Exception as e:
 raise Exception(
 f"{e}, you can download and unzip cifar-10 dataset manually, "
 "the data url is http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz")

class Block(nn.Module):

 def __init__(self, in_channels, out_channels, stride=1):
 super().__init__()
 self.residual_function = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1,
bias=False),
 nn.BatchNorm2d(out_channels),
 nn.ReLU(inplace=True),
 nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(out_channels)
)

 self.shortcut = nn.Sequential()
 if stride != 1 or in_channels != out_channels:
 self.shortcut = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
 nn.BatchNorm2d(out_channels)
)

 def forward(self, x):
 out = self.residual_function(x) + self.shortcut(x)
 return nn.ReLU(inplace=True)(out)

class ResNet(nn.Module):

 def __init__(self, block, num_classes=10):
 super().__init__()
 self.conv1 = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(64),
 nn.ReLU(inplace=True))
 self.conv2 = self.make_layer(block, 64, 64, 2, 1)
 self.conv3 = self.make_layer(block, 64, 128, 2, 2)
 self.conv4 = self.make_layer(block, 128, 256, 2, 2)
 self.conv5 = self.make_layer(block, 256, 512, 2, 2)

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 93

 self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
 self.dense_layer = nn.Linear(512, num_classes)

 def make_layer(self, block, in_channels, out_channels, num_blocks, stride):
 strides = [stride] + [1] * (num_blocks - 1)
 layers = []
 for stride in strides:
 layers.append(block(in_channels, out_channels, stride))
 in_channels = out_channels
 return nn.Sequential(*layers)

 def forward(self, x):
 out = self.conv1(x)
 out = self.conv2(out)
 out = self.conv3(out)
 out = self.conv4(out)
 out = self.conv5(out)
 out = self.avg_pool(out)
 out = out.view(out.size(0), -1)
 out = self.dense_layer(out)
 return out

def setup_seed(seed):
 torch.manual_seed(seed)
 torch.cuda.manual_seed_all(seed)
 np.random.seed(seed)
 random.seed(seed)
 torch.backends.cudnn.deterministic = True

def obs_transfer(src_path, dst_path):
 import moxing as mox
 mox.file.copy_parallel(src_path, dst_path)
 logging.info(f"end copy data from {src_path} to {dst_path}")

def main():
 seed = datetime.datetime.now().year
 setup_seed(seed)

 parser = argparse.ArgumentParser(description='Pytorch distribute training',
 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('--enable_gpu', default='true')
 parser.add_argument('--lr', default='0.01', help='learning rate')
 parser.add_argument('--epochs', default='100', help='training iteration')

 parser.add_argument('--init_method', default=None, help='tcp_port')
 parser.add_argument('--rank', type=int, default=0, help='index of current task')
 parser.add_argument('--world_size', type=int, default=1, help='total number of tasks')

 parser.add_argument('--custom_data', default='false')
 parser.add_argument('--data_url', type=str, default=os.path.join(file_dir, 'input_dir'))
 parser.add_argument('--output_dir', type=str, default=os.path.join(file_dir, 'output_dir'))
 args, unknown = parser.parse_known_args()

 args.enable_gpu = args.enable_gpu == 'true'
 args.custom_data = args.custom_data == 'true'
 args.lr = float(args.lr)
 args.epochs = int(args.epochs)

 if args.custom_data:

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 94

 logging.warning('you are training on custom random dataset, '
 'validation accuracy may range from 0.4 to 0.6.')

Settings for distributed training. Initialize DistributedDataParallel process. The
init_method, rank, and world_size parameters are automatically input by the platform. ###
 dist.init_process_group(init_method=args.init_method, backend="nccl",
world_size=args.world_size, rank=args.rank)
Settings for distributed training. Initialize DistributedDataParallel process. The
init_method, rank, and world_size parameters are automatically input by the platform. ###

 tr_set, val_set = get_data(args.data_url, custom_data=args.custom_data)

 batch_per_gpu = 128
 gpus_per_node = torch.cuda.device_count() if args.enable_gpu else 1
 batch = batch_per_gpu * gpus_per_node

 tr_loader = DataLoader(tr_set, batch_size=batch, shuffle=False)

Settings for distributed training. Create a sampler for data distribution to ensure that
different processes load different data. ###
 tr_sampler = DistributedSampler(tr_set, num_replicas=args.world_size, rank=args.rank)
 tr_loader = DataLoader(tr_set, batch_size=batch, sampler=tr_sampler, shuffle=False,
drop_last=True)
Settings for distributed training. Create a sampler for data distribution to ensure that
different processes load different data. ###

 val_loader = DataLoader(val_set, batch_size=batch, shuffle=False)

 lr = args.lr * gpus_per_node * args.world_size
 max_epoch = args.epochs
 model = ResNet(Block).cuda() if args.enable_gpu else ResNet(Block)

Settings for distributed training. Build a DistributedDataParallel model.
 model = nn.parallel.DistributedDataParallel(model)
Settings for distributed training. Build a DistributedDataParallel model.

 optimizer = optim.Adam(model.parameters(), lr=lr)
 loss_func = torch.nn.CrossEntropyLoss()

 os.makedirs(args.output_dir, exist_ok=True)

 for epoch in range(1, max_epoch + 1):
 model.train()
 train_loss = 0

Settings for distributed training. DistributedDataParallel sampler. Random numbers are set
for the DistributedDataParallel sampler based on the current epoch number to avoid loading
duplicate data. ###
 tr_sampler.set_epoch(epoch)
Settings for distributed training. DistributedDataParallel sampler. Random numbers are set
for the DistributedDataParallel sampler based on the current epoch number to avoid loading
duplicate data. ###

 for step, (tr_x, tr_y) in enumerate(tr_loader):
 if args.enable_gpu:
 tr_x, tr_y = tr_x.cuda(), tr_y.cuda()
 out = model(tr_x)
 loss = loss_func(out, tr_y)
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 train_loss += loss.item()

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 95

 print('train | epoch: %d | loss: %.4f' % (epoch, train_loss / len(tr_loader)))

 val_loss = 0
 pred_record = []
 real_record = []
 model.eval()
 with torch.no_grad():
 for step, (val_x, val_y) in enumerate(val_loader):
 if args.enable_gpu:
 val_x, val_y = val_x.cuda(), val_y.cuda()
 out = model(val_x)
 pred_record += list(np.argmax(out.cpu().numpy(), axis=1))
 real_record += list(val_y.cpu().numpy())
 val_loss += loss_func(out, val_y).item()
 val_accu = accuracy_score(real_record, pred_record)
 print('val | epoch: %d | loss: %.4f | accuracy: %.4f' % (epoch, val_loss / len(val_loader),
val_accu), '\n')

 if args.rank == 0:
 # save ckpt every epoch
 torch.save(model.state_dict(), os.path.join(args.output_dir, f'epoch_{epoch}.pth'))

if __name__ == '__main__':
 main()

FAQs
1. How Do I Use Different Datasets in the Sample Code?

● To use the CIFAR-10 dataset in the preceding code, download and
decompress the dataset and upload it to the OBS bucket. The file directory
structure is as follows:
DDP
|--- main.py
|--- input_dir
|------ cifar-10-batches-py
|-------- data_batch_1
|-------- data_batch_2
|-------- ...

DDP is the code directory specified during training job creation, main.py is
the preceding code example (the boot file specified during training job
creation), and cifar-10-batches-py is the decompressed dataset folder (stored
in the input_dir folder).

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 96

Figure 8-3 Creating a training job

● To use user-defined random data, change the value of custom_data in the
code example to true.
parser.add_argument('--custom_data', default='true')

Then, run main.py. The parameters for creating a training job are the same as
those shown in the preceding figure.

2. Why Can I Leave the IP Address of the Master Node Blank for DDP?

The init method parameter in parser.add_argument('--init_method',
default=None, help='tcp_port') contains the IP address and port number of the
master node, which are automatically input by the platform.

ModelArts
Model Training 8 Distributed Training

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 97

	Contents
	1 Introduction to Model Development
	2 Preparing Data
	3 Preparing Algorithms
	3.1 Introduction to Algorithm Preparation
	3.2 Using a Preset Image (Custom Script)
	3.2.1 Overview
	3.2.2 Developing a Custom Script
	3.2.3 Creating an Algorithm

	3.3 Using a Custom Image
	3.4 Searching for an Algorithm
	3.5 Deleting an Algorithm

	4 Performing a Training
	4.1 Creating a Training Job
	4.2 Reviewing Training Job Details
	4.3 Training Job Logs
	4.3.1 Introduction to Training Job Logs
	4.3.2 Common Logs
	4.3.3 Viewing Training Job Logs
	4.3.4 Locating Faults by Analyzing Training Logs

	4.4 Viewing Training Job Events
	4.5 Viewing the Resource Usage of a Training Job
	4.6 Evaluation Results
	4.7 Viewing Environment Variables of a Training Container
	4.8 Stopping, Rebuilding, or Searching for a Training Job
	4.9 CloudShell
	4.9.1 Logging In to a Training Container Using Cloud Shell

	4.10 Releasing Training Job Resources

	5 Training Experiment
	5.1 Introduction to Experiment
	5.2 Adding a Training Job to an Experiment
	5.3 Viewing an Experiment
	5.4 Deleting an Experiment

	6 Advanced Training Operations
	6.1 Selecting a Training Mode
	6.2 Automatic Recovery from a Training Fault
	6.2.1 Training Fault Tolerance Check

	6.3 Resumable Training and Incremental Training
	6.4 Detecting Training Job Suspension
	6.5 Permission to Set the Highest Job Priority

	7 Visualized Model Training
	7.1 Introduction to Training Job Visualization
	7.2 MindInsight Visualization Jobs
	7.3 TensorBoard Visualization Jobs

	8 Distributed Training
	8.1 Distributed Training
	8.2 Single-Node Multi-Card Training Using DataParallel
	8.3 Multi-Node Multi-Card Training Using DistributedDataParallel
	8.4 Distributed Debugging Adaptation and Code Example
	8.5 Sample Code of Distributed Training

